Product of mixing acids and bases describes salt is a physical property.
Product of mixing acids and bases
<u>Explanation:</u>
When an acid and a base are put together, they respond to kill the corrosive and base properties, creating a salt which portrays the physical property. The physical properties of table salt will be: Salt is a white cubic gem. At the point when the salt is unadulterated it clear.
It likewise shows up in white, dim or caramel shading relying on immaculateness. It is unscented yet has a solid salty taste. Fundamental salts contain the conjugate base of a feeble corrosive, so when they break down in the water, they respond with water to yield an answer with a pH more than 7.0.
_Mg + _HCL = _MgCl2 + H2
Separate the terms on each side:
_Mg + _HCl = _MgCl2 + H2
Mg- 1 Mg-1
H-1 H-2
Cl-1 Cl-2
Mg is balanced on both sides so move on to the next (put a 1 in the space).
1Mg
There are two H's and two Cl's on the results side, so to balance the equation put a 2 as a coefficient for HCl and it'll all balance out.
2HCl
Balamced equation will be:
1Mg + 2HCL = 1MgCl2 + H2
Answer:
The final temperature is 31.95° C.
Explanation:
Given that,
Initial temperature of a sample of chloroform, 
Mass of chloroform, m = 150 g
It absorbs 1 kJ of heat, Q = 10³ J
The specific heat of chloroform, c = 00.96 J/gºC
We need to find the final temperature. The heat absorbed by an object in terms of specific heat is given by :

So, the final temperature is 31.95° C.
Answer:
58.443 g/mol
Explanation:
The molar mass of NaCl is the sum of the molar masses of the individual atoms:
Na: 22.989770 g/mol
Cl: 35.453 g/mol
The total molar mass is ...
NaCl: 58.443 g/mol
__
The molar mass does not depend on whether the material is in solution or in any other form.
Answer:
The molarity (M) of the following solutions are :
A. M = 0.88 M
B. M = 0.76 M
Explanation:
A. Molarity (M) of 19.2 g of Al(OH)3 dissolved in water to make 280 mL of solution.
Molar mass of Al(OH)3 = Mass of Al + 3(mass of O + mass of H)
= 27 + 3(16 + 1)
= 27 + 3(17) = 27 + 51
= 78 g/mole
= 78 g/mole
Given mass= 19.2 g/mole


Moles = 0.246

Volume = 280 mL = 0.280 L

Molarity = 0.879 M
Molarity = 0.88 M
B .The molarity (M) of a 2.6 L solution made with 235.9 g of KBr
Molar mass of KBr = 119 g/mole
Given mass = 235.9 g

Moles = 1.98
Volume = 2.6 L


Molarity = 0.762 M
Molarity = 0.76 M