let's recall the graph of sin(x), is simply a sinusoidal line waving about, but its midline is at the x-axis, namely y = 0.
this equation is simply a transformation of it, the 1/2 changes the amplitude by half, midline stays the same though, the +3, moves the whole thing upwards, a vertical shift of 3, meaning the midline went from 0 to 3, y = 3.
I think the answer is $1.56
i hope this helps
Answer: complex equations has n number of solutions, been n the equation degree. In this case:
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i11,25°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi11%2C25%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i101,25°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi101%2C25%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i191,25°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi191%2C25%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i281,25°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi281%2C25%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i78,75°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi78%2C75%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i168,75°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi168%2C75%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i258,75°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi258%2C75%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i348,75°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi348%2C75%C2%B0%7D)
Step-by-step explanation:
I start with a variable substitution:

Then:

Solving the quadratic equation:


Replacing for the original variable:
![Z=\sqrt[4]{0,5+0,5i}](https://tex.z-dn.net/?f=Z%3D%5Csqrt%5B4%5D%7B0%2C5%2B0%2C5i%7D)
or ![Z=\sqrt[4]{0,5-0,5i}](https://tex.z-dn.net/?f=Z%3D%5Csqrt%5B4%5D%7B0%2C5-0%2C5i%7D)
Remembering that complex numbers can be written as:

Using this:

Solving for the modulus and the angle:
![Z=\left \{ {{\sqrt[4]{\frac{\sqrt{2}}{2} e^{i45}} = \sqrt[4]{\frac{\sqrt{2}}{2} } \sqrt[4]{e^{i45}} } \atop {\sqrt[4]{\frac{\sqrt{2}}{2} e^{i-45}} = \sqrt[4]{\frac{\sqrt{2}}{2} } \sqrt[4]{e^{i-45}} }} \right.](https://tex.z-dn.net/?f=Z%3D%5Cleft%20%5C%7B%20%7B%7B%5Csqrt%5B4%5D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20e%5E%7Bi45%7D%7D%20%3D%20%5Csqrt%5B4%5D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%7D%20%5Csqrt%5B4%5D%7Be%5E%7Bi45%7D%7D%20%7D%20%5Catop%20%7B%5Csqrt%5B4%5D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20e%5E%7Bi-45%7D%7D%20%3D%20%5Csqrt%5B4%5D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%7D%20%5Csqrt%5B4%5D%7Be%5E%7Bi-45%7D%7D%20%7D%7D%20%5Cright.)
The possible angle respond to:

Been "RAng" the resultant angle, "Ang" the original angle, "n" the degree of the root and "i" a value between 1 and "n"
In this case n=4 with 2 different angles: Ang = 45º and Ang = 315º
Obtaining 8 different angles, therefore 8 different solutions.
Answer and Step-by-step explanation:
In the picture:
The graph is shaded to the right, because everything that is above -2 is allowed, so the shaded region is what is allowed to be true in this inequality.
The line is dotted because the inequality is only using greater than or less than, and not greater than or equal to, or less than or equal to.
<em><u>#teamtrees #PAW (Plant And Water)</u></em>
Answer:
x=-3
y=26
Step-by-step explanation: