A spinning wheel
and the blade of a kitchen blender both illustrate rotation.
A child swinging on a swing
illustrates oscillation, or 'harmonic' motion.
A balloon being blown up is an example of dilation or inflation.
A sliding hockey puck demonstrates the concept of translation.
To solve this problem it is necessary to apply the concepts given in the kinematic equations of movement description.
From the perspective of angular movement, we find the relationship with the tangential movement of velocity through

Where,
Angular velocity
v = Lineal Velocity
R = Radius
At the same time we know that the acceleration is given as the change of speed in a fraction of the time, that is

Where
Angular acceleration
Angular velocity
t = Time
Our values are




Replacing at the previous equation we have that the angular velocity is



Therefore the angular speed of a point on the outer edge of the tires is 66.67rad/s
At the same time the angular acceleration would be



Therefore the angular acceleration of a point on the outer edge of the tires is 
The answer would be 6 because 2.0x3= 6
(newton’s 2nd law)
mark me brainliest
<h2>
Answer:2.65 seconds</h2>
Explanation:
Let
be the acceleration.
Let
be the initial velocity.
Let
be the final velocity.
Let
be the time taken.
As we know from the equations of motion,

Given,


A heat pump has a coefficient of performance of 7.05. If the heat pump absorbs 20 cal of heat from the cold outdoors in each cycle, find the heat expelled to the warm indoors. Answer in units of cal. I believe COP (heating mode) : 7.05 and COP = Qh/W Qc = 20 cal so I have to find Qh= ? cal I dont know an equation to put all this together? Please help, thank you.