The electrical force acting on a charge q immersed in an electric field is equal to

where
q is the charge
E is the strength of the electric field
In our problem, the charge is q=2 C, and the force experienced by it is
F=60 N
so we can re-arrange the previous formula to find the intensity of the electric field at the point where the charge is located:
They has been very successful but they are very expensive to operate that is your answer I hope this helps
Answer:
a)
125.6 rad/s
b)
25.12 rad/s²
Explanation:
a)
t = time required by the fan to get up to final operating speed = 5 sec
w = final operating rotational speed = 1200 rpm
we know that :
1 revolution = 2π rad
1 min = 60 sec
w = 
w = 
w = 125.6 rad/s
b)
w₀ = initial angular speed = 0 rad/s
α = angular acceleration
using the equation
w = w₀ + α t
125.6 = 0 + α (5)
α = 25.12 rad/s²
Answer:
magnitude: 21.6; direction: 33.7 degrees
Explanation:
When we multiply a vector by a scalar, we have to multiply each component of the vector by the scalar number. In this case, we have
vector: (-3,-2)
Scalar: -6
so the vector multiplied by the scalar will have components

The magnitude is given by Pythagorean's theorem:

and the direction is given by the arctan of the ratio between the y-component and the x-component:

Answer:
zero
rank the magnitude of the average velocity over the first 2 second