Answer:
Option C.
Impulse = mass × change in velocity
Explanation:
Impulse is defined by the following the following formula:
Impulse = force (F) × time (t)
Impulse = Ft
From Newton's second law of motion,
Force = change in momentum /time
Cross multiply
Force × time = change in momentum
Recall:
Impulse = Force × time
Thus,
Impulse = change in momentum
Recall:
Momentum = mass x velocity
Momentum = mv
Chang in momentum = mass × change in velocity
Change in momentum = mΔv
Thus,
Impulse = change in momentum
Impulse = mass × change in velocity
Answer:
Explanation:
The Balmer series in a hydrogen atom relates the possible electron transitions down to the n = 2 position to the wavelength of the emission that scientists observe. In quantum physics, when electrons transition between different energy levels around the atom (described by the principal quantum number, n) they either release or absorb a photon. The Balmer series describes the transitions from higher energy levels to the second energy level and the wavelengths of the emitted photons. You can calculate this using the Rydberg formula.
Answer:
Explanation:
(a)
Since the earth is assumed to be a sphere.
Volume of atmosphere = volume of (earth +atm osphere) — volume of earth
Hence the volume of atmosphere is
(b)
Write the ideal gas equation as foll ows:

Hence the required molecules is 
(c)
Write the ideal gas equation as follows:
Hence the required molecules in Caesar breath is
(d)
Volume fraction in Caesar last breath is as follows:
(e)
Since the volume capacity of the human body is 500 mL.

D is the answer
Velocity maybe negative or positive
while speed is always positive
Answer:
I think it is C) Newton's 2nd Law. Bob is pulling the heavier load. He needs a greater force to move as fast as Bill.