Answer:
B.
Explanation:
Oxygen is really -2
While the other options in correct form is
Hydrogen O.S is +1
A pure group 1 element is 0.
And
A monoatomic ion's O.S is the charge contained by it
Answer:
Kinetic energy = 127.89 Joules
Explanation:
Kinetic energy is calculated using the following rule:
KE = (1/2)*v* v^2
Where:
m is the mass = 145 g = 0.145 kg
v is the velocity = 42 m/sec
Substitute in the above equation to get the kinetic energy as follows:
KE = (0.5)(0.145)(42)^2
Kinetic energy = 127.89 Joules
Hope this helps :)
Thank you for posting your question here at brainly. I think your question is incomplete. Below is the complete question, it can be found elsewhere:
What is the probability of finding an electron within one Bohr radius of the nucleus?<span>Consider an electron within the 1s orbital of a hydrogen atom. The normalized probability of finding the electron within a sphere of a radius R centered at the nucleus is given by 1-a0^2[a0^2-e^(-2R/a0)(a0^2+2a0R+2R2)]. Where a0 is the Bohr radius (for a hydrogen atom, a0 = 0.529 Å.). What is the probability of finding an electron within one Bohr radius of the nucleus? What is the probability of finding an electron of the hydrogen atom within a 2.30a0 radius of the hydrogen nucleus?
Below is the answer:
</span><span>you plug the values for A0 and R into your formula</span>
Answer:
Explanation:
Radius = 9.5 x 10⁻² m
area of circle = 3.14 x (9.5 x 10⁻² )²
A = 283.38 x 10⁻⁴ m²
magnetic moment = area x current
M = 283.38 x 10⁻⁴ x 5
= 1416.9 x 10⁻⁴ Am²
Torque = MBsinθ
M is magnetic moment , B is magnetic field .
Max torque = 1416.9 x 10⁻⁴ x 3.4 x 10⁻³ , for θ = 90
= 4817.46 x 10⁻⁷
= 481.7 x 10⁻⁶
= 481.7 μ J
Energy = - MBcosθ
Max energy when θ = 180
MB = 4817.46 x 10⁻⁷ J
Min energy = - 4817.46 x 10⁻⁷ for θ = 0