Answer:
Extremely large and small numbers that have many zeros are long to write and take up a lot of room. So, by using scientific notation a number can be written shorter. For example, numbers such as 295,000,000,000 can be shortened to 2.95x
. This is easier to write and understand. This is why the scientific notation is used over standard.
Here you go!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
<span>-3(5+8r)=33-8r
-15 - 24r = 33 - 8r
-15 - 33 = - 8r + 24r
-48 = 16r
-48/16 = r
-3 = r
r = -3</span>
Answer:
We want to find:
![\lim_{n \to \infty} \frac{\sqrt[n]{n!} }{n}](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7Bn%21%7D%20%7D%7Bn%7D)
Here we can use Stirling's approximation, which says that for large values of n, we get:

Because here we are taking the limit when n tends to infinity, we can use this approximation.
Then we get.
![\lim_{n \to \infty} \frac{\sqrt[n]{n!} }{n} = \lim_{n \to \infty} \frac{\sqrt[n]{\sqrt{2*\pi*n} *(\frac{n}{e} )^n} }{n} = \lim_{n \to \infty} \frac{n}{e*n} *\sqrt[2*n]{2*\pi*n}](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7Bn%21%7D%20%7D%7Bn%7D%20%3D%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B%5Csqrt%5Bn%5D%7B%5Csqrt%7B2%2A%5Cpi%2An%7D%20%2A%28%5Cfrac%7Bn%7D%7Be%7D%20%29%5En%7D%20%7D%7Bn%7D%20%3D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7Bn%7D%7Be%2An%7D%20%2A%5Csqrt%5B2%2An%5D%7B2%2A%5Cpi%2An%7D)
Now we can just simplify this, so we get:
![\lim_{n \to \infty} \frac{1}{e} *\sqrt[2*n]{2*\pi*n} \\](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%5Cfrac%7B1%7D%7Be%7D%20%2A%5Csqrt%5B2%2An%5D%7B2%2A%5Cpi%2An%7D%20%5C%5C)
And we can rewrite it as:

The important part here is the exponent, as n tends to infinite, the exponent tends to zero.
Thus:

Answer:

Step-by-step explanation:
As the given Augmented matrix is
![\left[\begin{array}{ccccc}9&-2&0&-4&:8\\0&7&-1&-1&:9\\8&12&-6&5&:-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D9%26-2%260%26-4%26%3A8%5C%5C0%267%26-1%26-1%26%3A9%5C%5C8%2612%26-6%265%26%3A-2%5Cend%7Barray%7D%5Cright%5D)
Step 1 :
↔
![\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&7&-1&-1&:9\\8&12&-6&5&:-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-14%266%26-9%26%3A10%5C%5C0%267%26-1%26-1%26%3A9%5C%5C8%2612%26-6%265%26%3A-2%5Cend%7Barray%7D%5Cright%5D)
Step 2 :
↔
![\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&7&-1&-1&:9\\0&124&-54&77&:-82\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-14%266%26-9%26%3A10%5C%5C0%267%26-1%26-1%26%3A9%5C%5C0%26124%26-54%2677%26%3A-82%5Cend%7Barray%7D%5Cright%5D)
Step 3 :
↔
![\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&124&-54&77&:-82\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-14%266%26-9%26%3A10%5C%5C0%261%26-%5Cfrac%7B1%7D%7B7%7D%20%26-%5Cfrac%7B1%7D%7B7%7D%20%26%3A%5Cfrac%7B9%7D%7B7%7D%20%5C%5C0%26124%26-54%2677%26%3A-82%5Cend%7Barray%7D%5Cright%5D)
Step 4 :
↔
,
↔
![\left[\begin{array}{ccccc}1&0&4&-11&:-8\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&0&- \frac{254}{7} &\frac{663}{7} &:-\frac{1690}{7} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%264%26-11%26%3A-8%5C%5C0%261%26-%5Cfrac%7B1%7D%7B7%7D%20%26-%5Cfrac%7B1%7D%7B7%7D%20%26%3A%5Cfrac%7B9%7D%7B7%7D%20%5C%5C0%260%26-%20%5Cfrac%7B254%7D%7B7%7D%20%26%5Cfrac%7B663%7D%7B7%7D%20%26%3A-%5Cfrac%7B1690%7D%7B7%7D%20%5Cend%7Barray%7D%5Cright%5D)
Step 5 :
↔
![\left[\begin{array}{ccccc}1&0&4&-11&:-8\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&0&1&-\frac{663}{254} &:-\frac{1690}{254} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%264%26-11%26%3A-8%5C%5C0%261%26-%5Cfrac%7B1%7D%7B7%7D%20%26-%5Cfrac%7B1%7D%7B7%7D%20%26%3A%5Cfrac%7B9%7D%7B7%7D%20%5C%5C0%260%261%26-%5Cfrac%7B663%7D%7B254%7D%20%26%3A-%5Cfrac%7B1690%7D%7B254%7D%20%5Cend%7Barray%7D%5Cright%5D)
Step 6 :
↔
,
↔
![\left[\begin{array}{ccccc}1&0&0&-\frac{71}{127} &:\frac{176}{127} \\0&1&0&-\frac{131}{254} &:\frac{284}{127} \\0&0&1&-\frac{663}{254} &:\frac{845}{127} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%260%26-%5Cfrac%7B71%7D%7B127%7D%20%26%3A%5Cfrac%7B176%7D%7B127%7D%20%5C%5C0%261%260%26-%5Cfrac%7B131%7D%7B254%7D%20%26%3A%5Cfrac%7B284%7D%7B127%7D%20%5C%5C0%260%261%26-%5Cfrac%7B663%7D%7B254%7D%20%26%3A%5Cfrac%7B845%7D%7B127%7D%20%5Cend%7Barray%7D%5Cright%5D)
∴ we get
