Answer:
hola a la par y me dijo dígame qué hora prefieres que te hace falta un poco pero no me e sentido así
Step-by-step explanation:
sorry i need free points kekekekkejeje
The expected length of code for one encoded symbol is

where
is the probability of picking the letter
, and
is the length of code needed to encode
.
is given to us, and we have

so that we expect a contribution of

bits to the code per encoded letter. For a string of length
, we would then expect
.
By definition of variance, we have
![\mathrm{Var}[L]=E\left[(L-E[L])^2\right]=E[L^2]-E[L]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BL%5D%3DE%5Cleft%5B%28L-E%5BL%5D%29%5E2%5Cright%5D%3DE%5BL%5E2%5D-E%5BL%5D%5E2)
For a string consisting of one letter, we have

so that the variance for the length such a string is

"squared" bits per encoded letter. For a string of length
, we would get
.
Answer:
$633
Step-by-step explanation:
You multiply the 12x15 feet by 31.65
Answer: 3.5, 4.5, 9.5, 3.5
Step-by-step explanation:
Look at the image below to see where A, B, C, and D are.
A + B = 8
B + D = 8
A + C = 13
C - D = 6
we can see that A + B = 8 and D + B = 8, so A = D
substitute this into A + C = 13 to get D + C = 13
from D + C = 13 we can get D = 13 - C
plug this into C - D = 6 to get C - (13 - C) = 6
2C - 13 = 6
2C = 19
C = 9.5
Now we can find D = 13 - C = 13 - 9.5 = 3.5
D = 3.5
Now we can find A = D = 3.5
A = 3.5
Now we can find B from A + B = 8
B = 8 - A = 8 - 4.5 = 4.5
B = 4.5