That would be 58.6 oxide because if the 41.2 plus the oxide would be 48 plus the other particcles inside it so it equaled 58.6 oxide
Answer:
a. Rate = k×[A]
b. k = 0.213s⁻¹
Explanation:
a. When you are studying the kinetics of a reaction such as:
A + B → Products.
General rate law must be like:
Rate = k×[A]ᵃ[B]ᵇ
You must make experiments change initial concentrations of A and B trying to find k, a and b parameters.
If you see experiments 1 and 3, concentration of A is doubled and the Rate of the reaction is doubled to. That means a = 1
Rate = k×[A]¹[B]ᵇ
In experiment 1 and to the concentration of B change from 1.50M to 2.50M but rate maintains the same. That is only possible if b = 0. (The kinetics of the reaction is indepent to [B]
Rate = k×[A][B]⁰
<h3>Rate = k×[A]</h3>
b. Replacing with values of experiment 1 (You can do the same with experiment 3 obtaining the same) k is:
Rate = k×[A]
0.320M/s = k×[1.50M]
<h3>k = 0.213s⁻¹</h3>
The temperature decreases because there is no ozone in the mesosphere and the amount of air is decreasing.
Oxygen for complete combustion
Answer:
No effect.
Explanation:
Hello,
In this case, considering the widely studied Le Chatelier's principle, we can realize that the factors affecting equilibrium are concentration, temperature and pressure and volume if the reaction is in gaseous phase and with non-zero change in the number of moles. In such a way, by adding a catalyst to given reaction will have no effect on the equilibrium direction.
Best regards.