1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mademuasel [1]
3 years ago
12

4/5 of a number is 32​

Mathematics
2 answers:
andrew11 [14]3 years ago
6 0

Answer:

x = 40

Step-by-step explanation:

Step 1: Write out an equation

4/5(x) = 32

Step 2: Solve by dividing both sides by 4/5

x = 32/(4/5)

<em>Use KCF (Keep Change Flip) if you do not have a calc.</em>

x = 40

Troyanec [42]3 years ago
3 0

Answer:

The answer is 40

Step-by-step explanation:

32 times 5 is 160

then: 160 divided by 4 is 40.

check the answer: 4/5 of 40 is 32

because 40 divided by 5 is 8 and then times 8 by 4, so the answer would be 40.

<h2><em><u>Hope this helps!!!</u></em></h2>
You might be interested in
Estimate the quotient to the nearest whole number by using compatible numbers 32.44 ÷ 4.36
GarryVolchara [31]
I'm pretty sure its 7
7 0
3 years ago
HELP MEEEEEEEEE plz​
Diano4ka-milaya [45]

Answer:

15

Step-by-step explanation:

Red : Blue :

3        8

We have 40 blue marbles

Multiply 8 by what to get 40

40/8 =5

So we need to multiply by 5

Red : Blue :

3*5      8*5

15         40

There are 15 red marbles

8 0
3 years ago
Read 2 more answers
1. A 25% discount on a skateboard is $24.75. What is the cost before the discount?
klasskru [66]

Answer:

1. $33

2. 25%

3. 20%

4. Masako

5. 53.20

6.57.46

Step-by-step explanation:

5 0
2 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Find the number between 0.0004 and 0.0005
Margarita [4]

Answer:

0.00045

Step-by-step explanation:

This decimal is in the middle of these two numbers.

5 0
2 years ago
Other questions:
  • Kiera wanted to find the approximate number of history books at the Library she works at she used the computer to randomly take
    11·1 answer
  • Which property allows you to write the expression<br> (3 +71) + (8 - 61) as (8 - 61) + (3 + 71)?
    14·1 answer
  • X^2+10x-25=0<br>solve by completing the square
    12·1 answer
  • What is the area of the following polygon below?
    9·1 answer
  • What is the value of r?<br> Round your final answer to the nearest whole number.
    13·2 answers
  • If Smith is guilty, then Jones is innocent. If Jones is innocent, then Smith is guilty. Write each biconditional statement in ex
    6·1 answer
  • Plz answer question in screen shot
    8·1 answer
  • Please help answer this question
    5·2 answers
  • The perimeter of the shape is 50 centimeters. What is the length of
    14·1 answer
  • Please help me with question 44
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!