Answer:
Acceleration of the object is .
Explanation:
It is given that, the position of the object is given by :
Velocity of the object,
Acceleration of the object is given by :
Using the property of differentiation, we get :
So, the magnitude of the acceleration of the object at time t = 2.00 s is . Hence, this is the required solution.
Complete question:
A taut rope has a mass of 0.123 kg and a length of 3.54 m. What average power must be supplied to the rope to generate sinusoidal waves that have amplitude 0.200 m and wavelength 0.600 m if the waves are to travel at 28.0 m/s ?
Answer:
The average power supplied to the rope to generate sinusoidal waves is 1676.159 watts.
Explanation:
Velocity = Frequency X wavelength
V = Fλ ⇒ F = V/λ
F = 28/0.6 = 46.67 Hz
Angular frequency (ω) = 2πF = 2π (46.67) = 93.34π rad/s
Average power supplied to the rope will be calculated as follows
where;
ω is the angular frequency
A is the amplitude
V is the velocity
μ is mass per unit length = 0.123/3.54 = 0.0348 kg/m
= 1676.159 watts
The average power supplied to the rope to generate sinusoidal waves is 1676.159 watts.
Leave them, listen you are better than being with someone who is unsure. If you are 100% in this they need to match the energy. The purpose of dating is going into marriage eventually and imagine if when you get married they are like “wait I don’t know actually”. True me dump them and don’t look back
Answer:
4.68227 °C
Explanation:
= Mass of object = 500 kg
= Mass of water = 25 kg
c = Specific heat of water at 20°C = 4186 J/kg°C
h = Height from which the object falls = 100 m
g = Acceleration due to gravity = 9.8 m/s²
The potential energy and heat will balance each other
The temperature change in the water is 4.68227 °C