Answer:
Rate = vmax k3/k2+k3
Explanation:
The rate of reaction when the enzyme is saturated with substrate is the maximum rate of reaction, is referred to as Vmax.
This is usually expressed as the Km ie. Michaelis constant of the enzyme, an inverse measure of affinity. For practical purposes, Km is the concentration of substrate which permits the enzyme to achieve half Vmax.
Please kindly check attachment for the step by step solution of the given problem.
I believe it is noise pollution
Answer:
The magnitude of the gravitational force is 4.53 * 10 ^-7 N
Explanation:
Given that the magnitude of the gravitational force is F = GMm/r²
mass M = 850 kg
mass m = 2.0 kg
distance d = 1.0 m , r = 0.5 m
F = GMm/r²
Gravitational Constant G = 6.67 × 10^-11 Newtons kg-2 m2.
F = (6.67 × 10^-11 * 850 * 2)/0.5²
F = 0.00000045356 N
F = 4.53 * 10 ^-7 N
I = E / R
If the resistors are in series, the current is 0.3 Amperes.
If the resistors are in parallel, the current is 1.25 Amperes.
Answer:

Explanation:
In order to solve this problem, we mus start by drawing a free body diagram of the given situation (See attached picture).
From the free body diagram we can now do a sum of forces in the x and y direction. Let's start with the y-direction:



so:

now we can go ahead and do a sum of forces in the x-direction:

the sum of forces in x is 0 because it's moving at a constant speed.



so now we solve for theta. We can start by factoring mg so we get:

we can divide both sides into mg so we get:

this tells us that the problem is independent of the mass of the object.

we now divide both sides of the equation into
so we get:


so we now take the inverse function of tan to get:

so now we can find our angle:

so
