Answer:
g₂ = 11 m/s²
Explanation:
The value of free-fall acceleration on the surface of a planet is given by the following formula:

where,
g = free-fall acceleration
G = Universal Gravitational Constant
m = mass of the planet
r = radius of planet
FOR PLANET 1:
--------------------- equation (1)
FOR PLANET 2:

using equation (1):

<u>g₂ = 11 m/s²</u>
Answer:
The answer to this is falling all the way through the Earth is impossible, since its core is molten. ... As you approached the center of the earth the pull of gravity would decline and eventually (at the center) cease, but inertia would keep you going.
Explanation:
your welcome
Answer:
option (E) is correct.
Explanation:
Work done is defined as the product of force and the distance in the direction of force.
force, f = 100 N
Coefficient of friction, = 0.25
distance = 15 m
So, net force F = f - friction force
F = 100 - 0.25 x m g
Work = (100 - 0.25 mg) x d cosθ
For minimum work, the angle should be maximum.
So, the value of θ is 76°.
thus, option (E) is correct.
Before answering this question, first we have to understand the effect of ratio of surface area to volume on the rate of diffusion.
The rate of diffusion for a body having larger surface area as compared to the ratio of surface area to volume will be more than a body having less surface area. Mathematically it can written as-
V∝ R [ where v is the rate of diffusion and r is the ratio of surface area to volume]
As per the question,the ratio of surface area to volume for a sphere is given 
The surface area to volume ratio for right circular cylinder is given 
Hence, it is obvious that the ratio is more for right circular cylinder.As the rate diffusion is directly proportional to the surface area to volume ratio,hence rate of diffusion will be more for right circular cylinder.
Hence the correct option is B. The rate of diffusion would be faster for the right cylinder.