The radio waves are electromagnetic wave, so it travels with velocity of light i.e
.
We can use the relation between frequency, wavelength and speed as

Here c is speed of light,
is wavelength and f is frequency and its value is given 99.90 FM, it is actually in megahertz (i.e 99.90 MHz).
Therefore,
.
Thus, the broadcast wavelength of the given radio station is 3.003 m.
To add vectors we can use the head to tail method (Figure 1).
Place the tail of one vector at the tip of the other vector.
Draw an arrow from the tail of the first vector to the tip of the second vector. This new vector is the sum of the first two vectors.
Answer:
The false statement is in option 'd': The center of mass of an object must lie within the object.
Explanation:
Center of mass is a theoretical point in a system of particles where the whole mass of the system is assumed to be concentrated.
Mathematically the position vector of center of mass is defined as

where,
is the position vector of the mass dm.
As we can see for homogenous symmetrical objects such as a sphere,cube,disc the center of mass is located at the centroid of the shapes itself but in many shapes it is located outside the body also.
Examples of shapes in which center of mass is located outside the body:
1) Horseshoe shaped body.
2) A thin ring.
In many cases we can make shapes of bodies whose center of mass lies outside the body.
Answer:
-1m/s
Explanation:
We can calculate the speed of block A after collision
According to collision theory:
MaVa+MbVb = MaVa+MbVb (after collision)
Substitute the given values
5(3)+10(0) = 5Va+10(2)
15+0 = 5Va + 20
5Va = 15-20
5Va = -5
Va = -5/5
Va = -1m/s
Hence the velocity of ball A after collision is -1m/s
Note that the velocity of block B is zero before collision since it is stationary