Explanation:
initial velocity(u) = 90 km/s = 25 m/s
time (t) = 5 sec
mass (m) = 200 kg
final velocity (v) = 0 m/s
v = u + at
0 = 25 + a * 5
-25 = 5 a
-5 = a
Therefore acceleration = -5m/s²
Force = mass * acceleration
F = 200*-5
F = -1000 N
Given that,
Mass of the object, m = 7.11 kg
Spring constant of the spring, k = 61.6 N/m
Speed of the observer,
We need to find the time period of oscillation observed by the observed. The time period of oscillation is given by :
Time period of oscillation measured by the observer is :
So, the time period of oscillation measured by the observer is 5.79 seconds.
Formula which holds true for a leans with radii and and index refraction n is given as follows.
Since, the lens is immersed in liquid with index of refraction . Therefore, focal length obeys the following.
and,
or,
= 32.4 cm
Using thin lens equation, we will find the focal length as follows.
Hence, image distance can be calculated as follows.
= 47.9 cm
Therefore, we can conclude that the focal length of the lens in water is 47.9 cm.
Answer:
True
Just as Isaac Newton says, "For every action, there is an equal and opposite reaction."
a) For y = 102 mA, R = 98.039 ohms
For y = 97 mA, R = 103.09 ohms
b) Check explanatios for b
Applied voltage, V = 10 V
For the first measurement, current
According to ohm's law, V = IR
R = V/I
Here,
For the second measurement, current
b)
A linear equation is of the form y = Gx
The nominal value of the resistance = 100 ohms