1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexeev081 [22]
3 years ago
14

A flashlight has a resistance of 30 Q and is connected

Physics
1 answer:
Talja [164]3 years ago
7 0

Answer:

3 A

Explanation:

The relationship between voltage, current and resistance in a conductor is expressed by Ohm's law, which states that:

V=RI

where:

V is the potential difference across the conductor

R is the resistance of the conductor

I is the current flowing through it

In this problem, for this flashlight we have:

V = 90 V is the potential difference

R=30 \Omega is the resistance of the flashlight

Solving for I, we find the current:

I=\frac{V}{R}=\frac{90}{30}=3 A

You might be interested in
Two transverse waves travel along the same taut string inopposite directions. the waves are described by following equations use
Umnica [9.8K]

Answer: y'=2Asin(kx)cos(wt)

Explanation:

Let y1=A sin (kx + wt) be the first wave

y2=A sin (kx - wt) be the second wave in the opposite direction (which we showed by putting a negative sign between the terms kx and wt)

Please do note that both wave have the same attributes (that's Amplitude, wave number and angular frequency) because they are formed on the same medium by the same source just that their directions are opposite.

By super imposing these 2 waves, we have a resulting singular wave representing both wave (law of superimposition) with a resulting value of vertical displacement y'.

Thus y' = y1 + y2.

Let us do the math.

y'=A sin (kx + wt) + A sin (kx - wt)

By factoring A out, we have that

y' = A [ sin (kx + wt) + sin (kx - wt)]

For simplicity let us use the substitution

Let (kx + wt) = a and (kx - wt) =b

Hence we have that

y' = A [sin a + sin b].

From trigonometric ratio

sin a + sin b = 2sin[(a+b)/2] * cos [(a - b)/2]

By recalling that (kx + wt) = a and (kx - wt) =b

sin a + sin b = 2sin [(kx +wt +kx-wt) /2] * cos [(kx +wt - (kx-wt))/2]

Thus we have that

sin a + sin b = 2sin [(kx+wt+kx-wt)/2] * cos[(kx+wt-kx+wt)/2]

By collecting like terms in the bracket we have that

sin a + sin b = 2sin[2kx/2] * cos [2wt/2]

By dividing

sin a + sin b = 2sin(kx) cos(wt)

Now let us get the final resultant vertical displacement (y')

Recall that

y' = A [sin a + sin b]. and we already deduced that

sin a + sin b = 2sin(kx) cos(wt)

Finally,

y' = A [2sin(kx) cos(wt)] which is

y'=2Asin(kx)cos(wt)...... Final answer

4 0
3 years ago
Question 1 of 10
Bad White [126]
The answer is b maybe?
3 0
3 years ago
The table below shows the level of carbon dioxide in the atmosphere for a period of 50 years.
yan [13]

Answer: The level of CO2 has risen.

Explanation:

From the table shown, we can see that the quantity of CO₂ in the atmosphere has steadily risen since the year 1960 going from 317 CO₂PPM in that year to 390 CO₂PPM in 2010.

This is a cause for alarm because with so much carbon dioxide in the atmosphere, there will be an even greater greenhouse effect that will contribute to global warming.

6 0
2 years ago
What is the name for potential difference that causes current to flow?
Digiron [165]

Answer:

the answer is C i didnt mean to put b lol

Explanation:

3 0
3 years ago
Read 2 more answers
A cart, which has a mass of 2.30 kg is sitting at the top of an inclined plane, which is 4.50 meters long and meets the horizont
expeople1 [14]

Answer:

a) The gravitational potential energy before the cart rolls down the incline is 24.6 J.

b) The magnitude of the force that causes the cart to roll down is 5.47 N.

c) The acceleration of the cart is 2.38 m/s²

d) It takes the cart 1.94 s to reach the bottom of the incline.

e) The velocity of the cart at the bottom of the inclined plane is 4.62 m/s.

f) The kinetic energy of the cart as it reaches the bottom of the incline is 24.6 J.

g) The work done by the gravitational force is 24.6 J.

Explanation:

Hi there!

a) The gravitational potential energy is calculated using the following equation:

EP = m · g · h

Where:

EP = gravitational potential energy.

m = mass of the object.

g = acceleration due to gravity.

h = height at which the object is located.

The height of the inclined plane can be calculated using trigonomoetry:

sin 14.0° = height / lenght

sin 14.0° = height / 4.50 m

4.50 m · sin 14.0° = height

height = 1.09 m

Then, the gravitational potential energy will be:

EP = m · g · h

EP = 2.30 kg · 9.81 m/s² · 1.09 m = 24.6 J

The gravitational potential energy before the cart rolls down the incline is 24.6 J.

b) Please, see the attached figure for a graphical description of the problem and the forces acting on the cart. The force that causes the cart to accelerate down the incline is the horizontal component of the weight (Fwx in the figure). The magnitude of this force can be obtained using trigonometry:

sin 14° = Fwx / Fw

The weight of the cart (Fw) is calculated as follows:

Fw = m · g

Fw = 2.30 kg · 9.81 m/s²

Fw = 22.6 N

Then, the x-component of the weight will be:

FW · sin 14° = Fwx

22.6 N · sin 14° = Fwx

Fwx = 5.47 N

The magnitude of the force that causes the cart to roll down is 5.47 N.

c)Using the equation of Fwx we can calculate the acceleration of the cart:

Fwx = m · a

Where "m" is the mass of the cart and "a" is the acceleration.

Fwx / m = a

5.47 N / 2.30 kg = a

a = 2.38 m/s²

The acceleration of the cart is 2.38 m/s²

d) To calculate the time it takes the cart to reach the bottom of the incline, let´s use the equation of position of the cart:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x = position of the cart at time t.

x0 = initial position.

v0 = initial velocity.

a = acceleration.

t = time.

Considering the initial position as the point at which the cart starts rolling (x0 = 0) and knowing that the cart starts from rest (v0 = 0), let´s find the time it takes the cart to travel the 4.50 m of the inclined plane:

x = 1/2 · a · t²

4.50 m = 1/2 · 2.38 m/s² · t²

2 · 4.50 m / 2.38 m/s² = t²

t = 1.94 s

It takes the cart 1.94 s to reach the bottom of the incline.

e) The velocity of the cart at the bottom of the inclined plane can be obtained using the following equation:

v = v0 + a · t

v = 0 m/s + 2.38 m/s² · 1.94 s

v = 4.62 m/s

The velocity of the cart at the bottom of the inclined plane is 4.62 m/s.

f) The kinetic energy can be calculated using the following equation:

KE = 1/2 · m · v²

Where:

KE =  kinetic energy.

m = mass of the cart.

v = velocity of the cart.

KE = 1/2 · 2.30 kg · (4.62 m/s)²

KE = 24.6 J

The kinetic energy of the cart as it reaches the bottom of the incline is 24.6 J.

The gain of kinetic energy is equal to the loss of gravitational potential energy.

g) The work done by the gravitational force can be calculated using the work-energy theorem: the work done by the gravitational force is equal to the negative change in the gravitational potential energy:

W = -ΔPE

W = -(final potential energy - initial potential energy)

W = -(0 - 24.6 J)

W = 24.6 J

This can also be calculated using the definition of work:

W = Fw · d

Where "d" is the distance traveled in the direction of the force, that is the height of the inclined plane:

W = 22.6 N · 1.09 m = 24.6 J.

The work done by the gravitational force is 24.6 J.

4 0
3 years ago
Other questions:
  • Stacy travels 5 times as fast as Eric. Traveling in opposite directions, they are 336 miles apart after 4 hours. Find their rate
    6·1 answer
  • Leyden jars function similarly to modern _____________, which store electric charge in electronic circuitry.
    13·1 answer
  • A ballistic pendulum is a device for measuring bullet speeds. One of the simplest versions consists of a block of wood hanging f
    11·1 answer
  • What are the large, dark basaltic plains on the moon called?
    5·2 answers
  • A long, straight, horizontal wire carries a left-to-right current of 20 A. If the wire is placed in a uniform magnetic field of
    13·1 answer
  • If a force of 26 N is exerted on two balls, one with a mass of 0.52 kg and the other with a mass of 0.78 kg, the ball with the m
    7·1 answer
  • A 3m beam of negligible weight is balancing in equilibrium with a fulcrum placed 1m from its left end. If a force of 50N is appl
    5·1 answer
  • ‏Calculate the kinetic energies of the following objects moving at the given speeds : ( a ) a 91 kg football linebacker running
    15·1 answer
  • How can you say that light is a form of energy?​
    12·1 answer
  • Gabrielle has just upgraded her oil-burning furnace. Her new furnace takes cool air from outside and passes it through the heat
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!