Answer:
Dance studio
Explanation:
Martial art use to defend ourself from any dangerous. Dance is a way to learn it
Answer:
a) True. The number of photoelectrons is proportional to the amount (intensity) of the incident beam. From the expression above we see that threshold frequency cannot emit electrons.
b) λ = c / f
Therefore, as the wavelength increases, the frequency decreases and therefore the energy of the photoelectrons emitted,
c) threshold energy
h f =Ф
Explanation:
It's photoelectric effect was fully explained by Einstein by the expression
Knox = h f - fi
Where K is the kinetic energy of the photoelectrons, f the frequency of the incident radiation and fi the work function of the metal
a) True. The number of photoelectrons is proportional to the amount (intensity) of the incident beam. From the expression above we see that threshold frequency cannot emit electrons.
b) wavelength is related to frequency
λ = c / f
Therefore, as the wavelength increases, the frequency decreases and therefore the energy of the photoelectrons emitted, so there is a wavelength from which electrons cannot be removed from the metal.
c) As the work increases, more frequency radiation is needed to remove the electrons, because there is a threshold energy
h f =Ф
If I remember correctly (from my studies long time ago) the layers are from the outer to the center:
SiAl : Silicon-Aluminum
SiMa : Silicon-Magnesium (although should be Mg)
NiFe : Nickel-Iron
The SiMa layer should have the lightest elements (Magnesium is lighter than Aluminum)
An LED is useful because when a current passes through it, it gives out light.
Strange as it may seem, the object would keep moving, in a straight line and at the same speed, until it came near another object. Its momentum and kinetic energy would never change. It might continue like that for a billion years or more.
Have a look at Newton's first law of motion.