Given info
d = 0.000250 meters = distance between slits
L = 302 cm = 0.302 meters = distance from slits to screen
= angle to 8th max (note how m = 8 since we're comparing this to the form
)
(n = 5 as we're dealing with the 5th minimum )
---------------
Method 1

Make sure your calculator is in degree mode.
-----------------
Method 2

-----------------
Method 3

There is a slight discrepancy (the first two results were 611 nm while this is roughly 613 nm) which could be a result of rounding error, but I'm not entirely sure.
Answer:
9.916\times 10^{-4}T
Explanation:
Diameter of toroid is 15 cm =0.15 m
So length of the toroid is 
Number of turns of the toriod is given as 555
Current through the toroid is 0.670 A
Magnetic field 
Hey there Kendrell!
Yes, this is very true, when the car slows down, our bodies will tend to lean forward a little bit, and this is actually due to the "motion of inertia".
Inertia allows for this to happen, this is why in this case, we have this case.
Hope this helps.
~Jurgen
Answer:
Newton's second law of motion describes the relationship between force and acceleration. They are directly proportional. If you increase the force applied to an object, the acceleration of that object increases by the same factor. In short, force equals mass times acceleration.
Explanation:
Answer:
Tangential acceleration is in the direction of velocity - along the circumference of a circle if the object is undergoing circular motion
a = (V2 - V1) / T
Radial acceleration is perpendicular to the direction of motion if the object is not moving in a straight line (perhaps along the circumference of a circle)
a = m V^2 / R = m ω^2 R where R is the radius vector of the velocity - note that the Radius vector is directed from the center of motion to the object and for circular motion would be constant in magnitude but not in direction