Answer: Solar radiation reflects off the lighter colours, away from the car, thus keeping the car cool
Explanation: This is because lighter colors reflect a good amount of radiation while darker colors absorb it. Just like, Antarctica hasn't completely melted because it reflects a lot of the heat that is acting upon it. Or, you notice that you get hotter when you wear a black shirt opposed to a white one.
Answer:
21.21 m/s
Explanation:
Let KE₁ represent the initial kinetic energy.
Let v₁ represent the initial velocity.
Let KE₂ represent the final kinetic energy.
Let v₂ represent the final velocity.
Next, the data obtained from the question:
Initial velocity (v₁) = 15 m/s
Initial kinetic Energy (KE₁) = E
Final final energy (KE₂) = double the initial kinetic energy = 2E
Final velocity (v₂) =?
Thus, the velocity (v₂) with which the car we travel in order to double it's kinetic energy can be obtained as follow:
KE = ½mv²
NOTE: Mass (m) = constant (since we are considering the same car)
KE₁/v₁² = KE₂/v₂²
E /15² = 2E/v₂²
E/225 = 2E/v₂²
Cross multiply
E × v₂² = 225 × 2E
E × v₂² = 450E
Divide both side by E
v₂² = 450E /E
v₂² = 450
Take the square root of both side.
v₂ = √450
v₂ = 21.21 m/s
Therefore, the car will travel at 21.21 m/s in order to double it's kinetic energy.
Answer:
194,400 joules of kinetic energy.
Explanation:
Remember that to calculate the Kinetic energy you need to use the next formula:

We know that Mass= 1200 kg and velocity is 18m/s, so we insert those values into the formula:

So the kinetic energy of a car moving at 18m/s with a mass of 1200 kg would be 194,400 joules.
Answer:
the question is incomplete, the complete question is
"A circular coil of radius r = 5 cm and resistance R = 0.2 ? is placed in a uniform magnetic field perpendicular to the plane of the coil. The magnitude of the field changes with time according to B = 0.5 e^-t T. What is the magnitude of the current induced in the coil at the time t = 2 s?"
2.6mA
Explanation:
we need to determine the emf induced in the coil and y applying ohm's law we determine the current induced.
using the formula be low,

where B is the magnitude of the field and A is the area of the circular coil.
First, let determine the area using
where r is the radius of 5cm or 0.05m

since we no that the angle is at
we determine the magnitude of the magnetic filed


the Magnitude of the voltage is 0.000532V
Next we determine the current using ohm's law

