1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tamaranim1 [39]
3 years ago
10

a 2000 kg car moving down the road runs into a 5000 kg stationary suv. The car applies a force of 1400 n on the suv what is the

magnitude of force applied by the suv on the car
Physics
1 answer:
masha68 [24]3 years ago
3 0

Answer:

F_suv= 49050 N

Explanation:

We are told that a 2000 kg car moving down the road runs into a 5000 kg stationary suv. The car applies a force of 1400 N on the suv.

Now, according Newton's first law of motion, an object will continue in it's present state of rest except it is acted upon by an external body.

This means the force acting on the stationary Suv is force of gravity.

Thus; F_suv = 5000 × 9.81

F_suv= 49050 N

You might be interested in
The average intensity of light emerging from a polarizing sheet is 0.708 W/m2, and that of the horizontally polarized light inci
Pachacha [2.7K]

Answer:

Angle θ = 30.82°

Explanation:

From Malus’s law, since the intensity of a wave is proportional to its amplitude squared, the intensity I of the transmitted wave is related to the incident wave by; I = I_o cos²θ

where;

I_o is the intensity of the polarized wave before passing through the filter.

In this question,

I is 0.708 W/m²

While I_o is 0.960 W/m²

Thus, plugging in these values into the equation, we have;

0.708 W/m² = 0.960 W/m² •cos²θ

Thus, cos²θ = 0.708 W/m²/0.960 W/m²

cos²θ = 0.7375

Cos θ = √0.7375

Cos θ = 0.8588

θ = Cos^(-1)0.8588

θ = 30.82°

4 0
3 years ago
The kinetic energy of an object with a mass of 6.8 kg and a velocity of 5.0 m/s is J. (Report the answer to two significant figu
abruzzese [7]

Answer:

\boxed{\sf Kinetic \ energy \ (KE) = 85 \ J}

Given:

Mass (m) = 6.8 kg

Speed (v) = 5.0 m/s

To Find:

Kinetic energy (KE)

Explanation:

Formula:

\boxed{ \bold{\sf KE =  \frac{1}{2} m {v}^{2} }}

Substituting values of m & v in the equation:

\sf \implies KE =  \frac{1}{2}  \times 6.8 \times  {5}^{2}

\sf \implies KE = \frac{1}{ \cancel{2}}  \times  \cancel{2} \times 3.4 \times 25

\sf \implies KE =3.4 \times 25

\sf \implies KE = 85 \: J

8 0
3 years ago
Read 2 more answers
Imagine using brainly LOL COULDNT BE ME XD
Step2247 [10]

Answer:

LOL! couldnt be me either bestieeeee

7 0
3 years ago
Read 2 more answers
A group of students decides to set up an experiment in which they will measure the specific heat of a small amount of metal. The
lesya692 [45]
I think the answer is C
7 0
3 years ago
The normal eye, myopic eye and old age
yanalaym [24]

Answer:

1)    f’₀ / f = 1.10, the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) the two diameters have the same order of magnitude and are very close to each other

Explanation:

You have some problems in the writing of your exercise, we will try to answer.

1) The equation to be used in geometric optics is the constructor equation

          \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

where p and q are the distance to the object and the image, respectively, f is the focal length

* For the normal eye and with presbyopia

the object is at infinity (p = inf) and the image is on the retina (q = 15 mm = 1.5 cm)

        \frac{1}{f'_o} = 1/ inf + \frac{1}{1.5}

        f'₀ = 1.5 cm

this is the focal length for this type of eye

* Eye with myopia

the distance to the object is p = 15 cm the distance to the image that is on the retina is q = 1.5 cm

           1 / f = 1/15 + 1 / 1.5

           1 / f = 0.733

            f = 1.36 cm

this is the focal length for the myopic eye.

In general, the two focal lengths are related

         f’₀ / f = 1.5 / 1.36

         f’₀ / f = 1.10

The question of the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) For this second part we have a diffraction problem, the point diameter corresponds to the first zero of the diffraction pattern that is given by the expression for a linear slit

          a sin θ= m λ

the first zero occurs for m = 1, as the angles are very small

          tan θ = y / f = sin θ / cos θ

for some very small the cosine is 1

          sin θ = y / f

where f is the distance of the lens (eye)

           y / f = lam / a

in the case of the eye we have a circular slit, therefore the system must be solved in polar coordinates, giving a numerical factor

           y / f = 1.22 λ / D

           y = 1.22 λ f / D

where D is the diameter of the eye

          D = 2R₀

          D = 2 0.1

          D = 0.2 cm

           

the eye has its highest sensitivity for lam = 550 10⁻⁹ m (green light), let's use this wavelength for the calculation

         

* normal eye

the focal length of the normal eye can be accommodated to give a focus on the immobile retian, so let's use the constructor equation

      \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

sustitute

       \frac{1}{f} = \frac{1}{25} + \frac{1}{1.5}

       \frac{1}{f}= 0.7066

        f = 1.415 cm

therefore the diffraction is

        y = 1.22  550 10⁻⁹  1.415  / 0.2

        y = 4.75 10⁻⁶ m

this is the radius, the diffraction diameter is

       d = 2y

       d_normal = 9.49 10⁻⁶ m

* myopic eye

In the statement they indicate that the distance to the object is p = 15 cm, the retina is at the same distance, it does not move, q = 1.5 cm

       \frac{1}{f} = \frac{1}{15} + \frac{1}{ 1.5}

        \frac{1}{f}= 0.733

         f = 1.36 cm

diffraction is

        y = 1.22 550 10-9 1.36 10-2 / 0.2 10--2

        y = 4.56 10-6 m

the diffraction diameter is

        d_myope = 2y

         d_myope = 9.16 10-6 m

         \frac{d_{normal}}{d_{myope}} = 9.49 /9.16

        \frac{d_{normal}}{d_{myope}} =  1.04

we can see that the two diameters have the same order of magnitude and are very close to each other

8 0
3 years ago
Other questions:
  • A child goes down a slide with an initial height of 4m. What is his speed at the bottom of the slide? There is no other informat
    9·1 answer
  • Which class of hard hats does not protect you from electrical shock?
    5·2 answers
  • A person exerts a horizontal force of F=45N on the end of an 86cm wide door. The magnitude of the torque due to F about the pivo
    6·1 answer
  • If the arrows below indicate the path of a beam of light, which diagram shows an example of reflection?
    9·1 answer
  • Practice Exercises Name: : Billy-Joe stands on the Talahatchee Bridge kicking stones into the water below a) If Billy-Joe kicks
    13·1 answer
  • An open pipe is 1.42 m long.
    6·1 answer
  • <img src="https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20.r3" id="TexFormula1" title="V = \frac{4}{3} \pi .r3
    11·1 answer
  • What is simple definition of democracy​
    13·2 answers
  • Explain
    8·1 answer
  • . A rope is being used to pull a mass of 10 kg vertically upward. Determine the tension on the rope, if starting from rest, the
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!