1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ber [7]
3 years ago
8

When a car slows down suddenly, passengers in the car tend to move toward the front of the car. What is this due to?

Physics
1 answer:
Neko [114]3 years ago
4 0
Hey there Kendrell!

Yes, this is very true, when the car slows down, our bodies will tend to lean forward a little bit, and this is actually due to the "motion of inertia".

Inertia allows for this to happen, this is why in this case, we have this case.

Hope this helps.
~Jurgen


You might be interested in
A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is r
atroni [7]

(a) 2.79 rev/s^2

The angular acceleration can be calculated by using the following equation:

\omega_f^2 - \omega_i^2 = 2 \alpha \theta

where:

\omega_f = 20.0 rev/s is the final angular speed

\omega_i = 11.0 rev/s is the initial angular speed

\alpha is the angular acceleration

\theta=50.0 rev is the number of revolutions made by the disk while accelerating

Solving the equation for \alpha, we find

\alpha=\frac{\omega_f^2-\omega_i^2}{2d}=\frac{(20.0 rev/s)^2-(11.0 rev/s)^2}{2(50.0 rev)}=2.79 rev/s^2

(b) 3.23 s

The time needed to complete the 50.0 revolutions can be found by using the equation:

\alpha = \frac{\omega_f-\omega_i}{t}

where

\omega_f = 20.0 rev/s is the final angular speed

\omega_i = 11.0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

t is the time

Solving for t, we find

t=\frac{\omega_f-\omega_i}{\alpha}=\frac{20.0 rev/s-11.0 rev/s}{2.79 rev/s^2}=3.23 s

(c) 3.94 s

Assuming the disk always kept the same acceleration, then the time required to reach the 11.0 rev/s angular speed can be found again by using

\alpha = \frac{\omega_f-\omega_i}{t}

where

\omega_f = 11.0 rev/s is the final angular speed

\omega_i = 0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

t is the time

Solving for t, we find

t=\frac{\omega_f-\omega_i}{\alpha}=\frac{11.0 rev/s-0 rev/s}{2.79 rev/s^2}=3.94 s

(d) 21.7 revolutions

The number of revolutions made by the disk to reach the 11.0 rev/s angular speed can be found by using

\omega_f^2 - \omega_i^2 = 2 \alpha \theta

where:

\omega_f = 11.0 rev/s is the final angular speed

\omega_i = 0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

\theta=? is the number of revolutions made by the disk while accelerating

Solving the equation for \theta, we find

\theta=\frac{\omega_f^2-\omega_i^2}{2\alpha}=\frac{(11.0 rev/s)^2-0^2}{2(2.79 rev/s^2)}=21.7 rev

4 0
3 years ago
What happens in the process of gravitational condensation?
Lerok [7]

Answer:

An object decreases in size due to the collision of materials. An object increases in size due to the addition of materials. Gas particles are formed from solar nebula materials.

3 0
3 years ago
Singly charged gas ions are accelerated from rest through a voltage of 10.3 V. At what temperature (in K) will the average kinet
Natasha_Volkova [10]

Answer:

Temperature of the gas molecules is 7.96 x 10⁴ K

Explanation:

Given :

Ions accelerated through voltage, V = 10.3 volts

The work done to change the position of singly charged gas ions is given by the relation :

W = q x V

Here q is charge of the ions and its value is 1.6 x 10⁻¹⁹ C.

Average kinetic energy of gas molecules is given by the relation:

K.E. = \frac{3}{2}kT

Here T is temperature and k is Boltzmann constant and its value is 1.38 x 10⁻²³ J/K.

According to the problem, the average kinetic energy of gas is equal to the work done to move the singly charged ions, i.e. ,

K.E. = W

\frac{3}{2}kT = qV

Rearrange the above equation in terms of T :

T= \frac{2qV}{3k}

Substitute the suitable values in the above equation.

T=\frac{2\times1.6\times10^{-19}\times10.3 }{3\times1.38\times10^{-23} }

T = 7.96 x 10⁴ K

5 0
3 years ago
If you sleep 33% in a day, how many hours is that?
lesantik [10]

In this question, one has to carefully understand that the total number of hours in the day can never be more that 24 hours. based on this important fact the answer to the question can be very easily deduced. The only requirement is calculating perfectly.
Number of hours in a day = 24 hours
Percentage of hours of sleep in a day = 33%
Amount of sleep in the day = (33/100) * 24
                                             = 7.92 hours
So 33% of sleep in a day is equal to 7.92 hours. I hope this answer has helped you. In future you can keep the procedure in mind for solving such problems.
5 0
3 years ago
Assume the space shuttle's main engines produce 764,576 newtons of thrust, and the shuttle has a mass of 78,018 kg. Why does the
Nady [450]

Weight of anything = (mass) x (gravity in the place where the thing is)

Weight of anything on Earth = (mass) x (9.81 m/s²)

Weight of the shuttle = (78,018 kg) x (9.81 m/s²)

Weight of the shuttle, on Earth = 765,357 Newtons

Thrust of main engines = 764,576 Newtons

Are you starting to see the problem yet ?

The weight of the whole thing standing on the launch pad is 751 Newtons more than the maximum thrust of the main engines, and the engines can't lift it !  Even with all throttles wide open, the main engines alone would need about 175 <em>more</em> pounds of thrust to budge that load off the ground.  Even with the pedal to the metal, with flame and smoke belching out and covering the whole launch complex, the shuttle would just sit there and never leave the pad.

Well, no.  That's not exactly what would happen.  As the fuel in the main monster fuel tank is burned, the weight decreases.  So it would actually happen like this:  After the man announced "Zero !  We have ignition !  All engine running !", the ship would just sit there on the pad ... at first.  It would go nowhere and not even wiggle, <em>UNTIL</em> the first 175 pounds of fuel got burned without accomplishing anything.  The ship would then be 175 pounds lighter.  At that point, the weight would be exactly equal to the thrust of the main engines, and the vertical forces on the ship would be balanced.  Then, as MORE fuel continued to be wasted and the weight continued to decrease, the main engines could just begin to lift the ship off the pad.

So the correct answer is <em>choice-D</em> .  It tells the whole story, quicker than I can tell it.

4 0
3 years ago
Other questions:
  • What happen when a star dies?
    13·1 answer
  • Which mass would have the greatest acceleration if the same unbalanced force was applied to each?
    9·1 answer
  • What is meant by atmosperic refraction of light?
    15·1 answer
  • The _______ is/are a thin sheet of skin at the end of the outer ear canal that vibrates in response to sound.
    8·1 answer
  • Why does a bowling ball have more<br> gravity than a soccer ball?
    11·2 answers
  • A system of 4 electrons, 18 protons, and 4 neutrons has a net charge of?
    13·1 answer
  • Why do cars stay in motion.
    5·2 answers
  • Please answer all three answers
    11·1 answer
  • Agatha the snake is 50 centimeters long.3 years from now she will be 152 centimeters long and fully grown. If Agatha grows at co
    9·1 answer
  • Which of these are lost when the body repairs?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!