<span>Kinetic energy because it is taking the students to school.</span>
Answer:
If the frequency of the source is increased the current in the circuit will decrease.
Explanation:
The current through the circuit is given as;
Where;
V is the voltage in the AC circuit
Z is the impedance
Where;
R is the resistance
is the inductive reactance
= ωL = 2πfL
where;
L is the inductance
f is the frequency of the source
Finally, the current in the circuit is given as;
From the equation above, an increase in frequency (f) will cause a decrease in current (I).
Therefore, If the frequency of the source is increased the current in the circuit will decrease.
I am pretty sure the answer to your question is B
Answer: Given:
Initial velocity= 36km/h=36x5/18=10m/s
Final velocity =54km/h=54x5/18=15m/s
Time =10sec
Acceleration = v-u/ t
=15-10/10=5/10=1/2=0.5 m/s2
Distance =s=?
From second equation of motion:
S=ut +1/2 at^2
=10*10+1/2*0.5*10*10
=100+25
=125m
So distance travelled 125m
Hope it helps you
Answer:
-35 m/s
Explanation:
Momentum is conserved.
Momentum before firing = momentum after firing
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
Before the bullet is fired, the bullet and rifle have no velocity, so u₁ and u₂ are 0.
0 = m₁v₁ + m₂v₂
Given m₁ = 0.7 kg, v₁ = 350 m/s, and m₂ = 7 kg:
0 = (0.7 kg) (350 m/s) + (7 kg) v
v = -35 m/s
The rifle recoils at 35 m/s in the opposite direction.