Answer:
Option 2= Glucose
Explanation:
Cell membrane is made up of two phospholipid layers and each contain phosphate head and fatty acid or lipid tails. the head is present between the outer and inner boundaries and tail is present in between. The small non- polar molecules can pass the membrane through simple diffusion. This lipid tail restrict the passage of polar molecules including water soluble substances like glucose. However, transmembranes are present that allow the molecules to inter that are blocked by the tails.
Facilitated diffusion:
it is a type of diffusion in which caries protein without using the cellular energy shuttle the molecules to the cell membrane. Glucose is bind on the carrier protein ,change the shape and transport it from one to another side of membrane. In order to absorb the glucose red blood cells use this kind of diffusion.
Primary active transport:
The cells that are present along small intestine use this type of transport to pump the glucose inside the cell. The primary active transport require energy to transport the glucose inside.
Secondary active transport:
It is another method of transport of glucose into the cell. This method can not use ATP but it is based on concentration gradient of the sodium that provide electro chemical energy for the glucose transport.
Answer:
When writing equation the mass on left side of equation must be equal to the mass on right side. True
Explanation:
The chemical reactions always follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
For example:
In photosynthesis reaction:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass because total mass is equal on both side of equation.
Same things but with different numbers of neutrons in nuclei
Answer:
+1
Explanation:
Na₂O₂
NOTE: the oxidation number of oxygen is always –2 except in peroxides where it is –1.
Thus, we can obtain the oxidation number of sodium (Na) in Na₂O₂ as illustrated below:
Na₂O₂ = 0 (oxidation number of ground state compound is zero)
2Na + 2O = 0
O = –1
2Na + 2(–1) = 0
2Na – 2 = 0
Collect like terms
2Na = 0 + 2
2Na = 2
Divide both side by 2
Na = 2/2
Na = +1
Thus, the oxidation number of sodium (Na) in Na₂O₂ is +1