I’m pretty positive the answer is True
Answer:
A) ψ² describes the probability of finding an electron in space.
Explanation:
The Austrian physicist Erwin Schrödinger formulated an equation that describes the behavior and energies of submicroscopic particles in general.
The Schrödinger equation i<u>ncorporates both particle behavior</u>, in terms of <u>mass m</u>, and wave behavior, in terms of a <u><em>wave function ψ</em></u>, which depends on the location in space of the system (such as an electron in an atom).
The probability of finding the electron in a certain region in space is proportional to the square of the wave function, ψ². According to wave theory, the intensity of light is proportional to the square of the amplitude of the wave, or ψ². <u>The most likely place to find a photon is</u> where the intensity is greatest, that is, <u>where the value of ψ² is greatest</u>. A similar argument associates ψ² with the likelihood of finding an electron in regions surrounding the nucleus.
To express the answer of (6.93 x 10¹) (2.0 x 10-4) in scientific notation, it should be 1.4 x 10^-2. <span>To </span>multiply<span> two numbers expressed in </span>scientific notation<span>, simply </span>multiply<span> the numbers out front and add the exponents. I hope it helps. </span>
Answer:
The statements are definitions to chromatography terms which have been highlighted below.
Explanation:
Match the chromatography term with its definition.
Volumetric Flow Rate = The volume of solvent traveling through the column per unit time.
Retention time = The elapsed time between sample injection and detection.
Adjusted Retention Time = The time required by a retained solute to travel through the column beyond the time required by the un -retained solvent.
Linear Flow Rate = The distance traveled by the solvent per unit time.
Retention factor = Describes the amount of time that a sample spends in the stationary phase relative to the mobile phase. It is sometimes also called the capacity factor or capacity ratio.
Relative Volume = Volume of the mobile phase required to elute a solute from the column.
Relative Retention = Ratio of the adjusted retention times or retention factors of two solutes. It is sometimes also called the separation factor.
Partition coefficient = The ratio of the solute concentrations in the mobile and stationary phases.