A tone that is lower in pitch is lower in what characteristic?=frequency
Answer:
The correct answer is B) it helps to ensure the result are consistent and repeatable.
Explanation:
Scientist generally repeat an experiment if he or she did not make a mistake in the first one to compare the results of two experiment, if there is no difference in the result or values obtainted from the observation of two experiment. he or she become sure that experiment was done in a right way because if there is some error made when experiment was carried out then the result of two same experiment would be different.
Answer:
see note under explanation
Explanation:
When describing system and surroundings the system is typically defined as the 'object of interest' being studied and surroundings 'everything else'. In thermodynamics heat flow is typically defined as endothermic or exothermic. However, one should realize that the terms endothermic and exothermic are in reference to the 'system' or object of interest being studied. For example if heat is transferred from a warm object to a cooler object it is imperative that the system be defined 1st. So, with that, assume the system is a warm metal cylinder being added into cooler water. When describing heat flow then the process is exothermic with respect to the metal cylinder (the system) but endothermic to the water and surroundings (everything else).
B
mass of solute - 4.0 g
mass of solution - 100g + 4.0g = 104g
4/104 = 0.03846
0.03846 • 100 = 3.8%
Answer:
Explanation:
<u>1) Rate law, at a given temperature:</u>
- Since all the data are obtained at the same temperature, the equilibrium constant is the same.
- Since only reactants A and B participate in the reaction, you assume that the form of the rate law is:
r = K [A]ᵃ [B]ᵇ
<u>2) Use the data from the table</u>
- Since the first and second set of data have the same concentration of the reactant A, you can use them to find the exponent b:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₂ = (1.50)ᵃ (2.50)ᵇ = 2.50 × 10⁻¹ M/s
Divide r₂ by r₁: [ 2.50 / 1.50] ᵇ = 1 ⇒ b = 0
- Use the first and second set of data to find the exponent a:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₃ = (3.00)ᵃ (1.50)ᵇ = 5.00 × 10⁻¹ M/s
Divide r₃ by r₂: [3.00 / 1.50]ᵃ = [5.00 / 2.50]
2ᵃ = 2 ⇒ a = 1
<u>3) Write the rate law</u>
This means, that the rate is independent of reactant B and is of first order respect reactant A.
<u>4) Use any set of data to find K</u>
With the first set of data
- r = K (1.50 M) = 2.50 × 10⁻¹ M/s ⇒ K = 0.250 M/s / 1.50 M = 0.167 s⁻¹
Result: the rate constant is K = 0.167 s⁻¹