Answer:
A decrease in the total volume of the reaction vessel (T constant)
Explanation:
- Le Châtelier's principle predicts that the moles of H2 in the reaction container will increase with a decrease in the total volume of the reaction vessel.
- <em><u>According to the Le Chatelier's principle, when a chnage is a applied to a system at equilibrium, then the equilibrium will shift in a way that counteracts the effect causing it.</u></em>
- In this case, a decrease in volume means there is an increase in pressure, therefore the equilibrium will shift towards the side with the fewer number of moles of gas.
First, we have to get how many grams of C & H & O in the compound:
- the mass of C on CO2 = mass of CO2*molar mass of C /molar mass of CO2
= 0.5213 * 12 / 44 = 0.142 g
- the mass of H atom on H2O = mass of H2O*molar mass of H / molar mass of H2O
=0.2835 * 2 / 18 = 0.0315 g
- the mass of O = the total mass - the mass of C atom - the mass of H atom
= 0.3 - 0.142 - 0.0315 = 0.1265 g
Convert the mass to mole by divided by molar mass
C(0.142/12) H(0.0315/2) O(0.1265/16)
C(0.0118) H(0.01575) O(0.0079) by dividing by the smallest value 0.0079
C1.504 H3.99 O1 by rounding to the nearst fraction
C3/2 H4/1 )1/1 multiply by 2
∴ the emprical formula C3H8O2
Table salt is an ionic compound :)
Rate and Thanks!
There are five states of matter out of which we encounter three states of matter in our day today life
a) gas b) solid and c) liquid
the main difference between the three is of
a) Inter molecular forces of attraction
b) thermal energy
due to this
a) solid has high intermolecular forces and low thermal energy: thus they have fix shape and occupy fix volume
b) liquid has intermediate forces and medium themal energy. Thus they may have fixed volume and but no fix shape
c) gas has weak intermoelcular forces and high thermal energy. thus they have no fixed volume no fix shape
so in the given problem
the state of the substance D- Gas.