Answer:
1023.75mmHg
Explanation:
V1 = 3.5L
P1 = 585mmHg
V2 = 2.0L
P2 = ?
To solve this question, we'll require the use of Boyle's law which states that the volume of a fixed mass of gas is inversely proportional to its pressure provided that temperature is kept constant.
Mathematically,
V = kP, k = PV
P1 × V1 = P2 × V2 = P3 × V3 = .......= Pn × Vn
P1 × V1 = P2 × V2
Solve for P2,
P2 = (P1 × V1) / V2
P2 = (585 × 3.5) / 2.0
P2 = 2047.5 / 2.0
P2 = 1023.75mmHg
The final pressure of the gas is 1023.75mmHg
Answer:
1.146 x 10⁴ year.
Explanation:
- The decay of carbon-14 is a first order reaction.
- The rate constant of the reaction (k) in a first order reaction = ln (2)/half-life = 0.693/(5730 year) = 1.21 x 10⁻⁴ year⁻¹.
- The integration law of a first order reaction is:
<em>kt = ln [A₀]/[A]</em>
<em></em>
k is the rate constant = 1.21 x 10⁻⁴ year⁻¹.
t is the time = ??? years.
[A₀] is the initial percentage of carbon-14 = 100.0 %.
[A] is the remaining percentage of carbon-14 = 1/4[A₀] = 25.0 %.
∵ kt = ln [Ao]/[A]
∴ (1.21 x 10⁻⁴ year⁻¹)(t) = ln (100.0%)/[25.0 %]
(1.21 x 10⁻⁴ year⁻¹)(t) = 1.386.
∴ <em>t </em>= 1.386/
(1.21 x 10⁻⁴ year⁻¹) = <em>1.146 x 10⁴ year.</em>
Stirring affects how quickly a solute dissolves in a solvent, but has no effect on how much solute will dissolve. The amount of solute that will dissolve is affected by temperature - more will dissolve at higher temperatures. This is called the solubility of the solute
Higher temperature, more kinetic energy, more space between particles, higher volume
(: