Sound waves are produced by air flow coming from our lungs passing through our throat, more specifically our larynx and moving with two folds of tissue called vocal chords. The sound is made by the vibration of vocal chords, so the more stretched the chords are over the larynx, their frequency of vibration is higher, therefore producing higher-pitched sounds.
The 5 is a coefficient while the 2 is a subscript.
Answer:
20.95 g of caffeine, C₈H₁₀N₄O₂
Explanation:
From the question given above, the following data were obtained:
Number of molecules of C₈H₁₀N₄O₂ = 6.5×10²² molecules
Mass of C₈H₁₀N₄O₂ =?
From Avogadro's hypothesis,
1 mole of C₈H₁₀N₄O₂ = 6.02×10²³ molecules
Next, we shall determine the mass of 1 mole of C₈H₁₀N₄O₂. This can be obtained as follow:
1 mole of C₈H₁₀N₄O₂ = (8×12) + (10×1) + (4×14) + (2×16)
= 96 + 10 + 56 + 32
1 mole of C₈H₁₀N₄O₂ = 194 g
Thus,
194 g of C₈H₁₀N₄O₂ = 6.02×10²³ molecules
Finally, we shall determine the mass of caffeine, C₈H₁₀N₄O₂ that contains 6.5×10²² molecules. This can be obtained as follow:
6.02×10²³ molecules = 194 g of C₈H₁₀N₄O₂
Therefore,
6.5×10²² molecules = (6.5×10²² × 194) / 6.02×10²³
6.5×10²² molecules = 20.95 g of C₈H₁₀N₄O₂.
Therefore, 20.95 g of caffeine, C₈H₁₀N₄O₂ contains 6.5×10²² molecules