Answer:
- <u><em>beta decay</em></u>
Explanation:
The <em>process</em> is represented by the nuclear equation:
→ 
Where:
- n represents a neutron,
- p represents a proton, and
- β represents an electron.
The superscripts to the leff of each symbol is the mass number (number of protons and neutrons), and the subscript to the left means the atomic number (number of protons).
Then, in this process a neutron is being transformed into a proton by the emssion of an electron (from inside the nucleus of the atom).
This electron is named beta (β) particle, and the process is called <u><em>beta decay</em></u>, because the neutron is changing into other subatomic particles.
You will find the smallest when u release the ball and the highest when the ball is in mid air glad I could help will u please make me brainliest
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
The type of atom has the strongest attraction for electrons in bond formation Chlorine (Ci) c<span>onsider the location of barium, chlorine, iodine, and strontium on the periodic table.</span>
A reaction mechanism must ultimately be understood as a "blow-by-blow" description of the molecular-level events whose sequence leads from reactants to products. These elementary steps (also called elementary reactions) are almost always very simple ones involving one, two, or [rarely] three chemical species which are classified
It is common knowledge that chemical reactions occur more rapidly at higher temperatures. Everyone knows that milk turns sour much more rapidly if stored at room temperature rather than in a refrigerator, butter goes rancid more quickly in the summer than in the winter, and eggs hard-boil more quickly at sea level than in the mountains. For the same reason, cold-blooded animals such as reptiles and insects tend to be noticeably more lethargic on cold days.
Thermal energy relates direction to motion at the molecular level. As the temperature rises, molecules move faster and collide more vigorously, greatly increasing the likelihood of bond cleavages and rearrangements as described above.
Answer:
A) During this procedure ( hypoventilation ) The CO2 in the arterial blood vessels and the lungs increases and this drives the PH level in the system lower, and the equilibrium will shift to the right. this is because the Blood-PH level is controlled by CO2 - bicarbonate buffer system
B) The blood PH may rise to 7.60 during Hyperventilation because the removal of CO2 from the lungs causes the increase in
which is directly proportional to the increase in Blood PH levels
C) Hyper ventilation before a dash would be useful because it will remove excessive Hydrogen ions and and raise the Blood PH levels in preparedness of the production of acids like Lactic acid
Explanation:
A) During this procedure ( hypoventilation ) The CO2 in the arterial blood vessels and the lungs increases and this drives the PH level in the system lower, and the equilibrium will shift to the right. this is because the Blood-PH level is controlled by CO2 - bicarbonate buffer system
⇄ 
B) The blood PH may rise to 7.60 during Hyperventilation because the removal of CO2 from the lungs causes the increase in
which is directly proportional to the increase in Blood PH levels
C) Hyper ventilation before a dash would be useful because it will remove excessive Hydrogen ions and and raise the Blood PH levels in preparedness of the production of acids like Lactic acid