9514 1404 393
Answer:
D: all real numbers
R: f(x) > 0
A: f(x) = 0
(-∞, 0), (+∞, +∞)
vertical stretch by a factor of 2; left shift 2 units
Step-by-step explanation:
The transformation ...
g(x) = a·f(b(x -c)) +d
does the following:
- vertical stretch by a factor of 'a'
- horizontal compression by a factor of 'b'
- translation right by 'c' units
- translation up by 'd' units
For many functions, horizontal coordinate changes are indistinguishable from vertical coordinate changes. Exponential functions tend to be one of those.
__
Using the above notation, you seem to have f(x) = 3^x, and g(x) = 2f(x+2). The transformation is a vertical stretch by a factor of 2, and a translation left 2 units.
__
As with all exponential functions, ...
- the domain is "all real numbers"
- the range is all numbers above the asymptote: f(x) > 0
- the horizontal asymptote is f(x) = 0
The function is a growth function, so ...
- x → -∞, f(x) → 0
- x → ∞, f(x) → ∞
_____
<em>Additional comment</em>
The left shift is equivalent to an additional vertical stretch. The function could be rewritten as ...
f(x) = 18(3^x)
with no left shift and a vertical stretch by a factor of 18 instead of 2.
Answer:
4
Step-by-step explanation:
f⁻¹(x) = x²+3, but none of that matters, since f(f⁻¹(x)) = x
Let
n-------> the number of nickels
q------> the number of quarters
we know that

so
----> equation A
----> equation B
substitute equation B in equation A
![0.05n+0.25[3n]=1.60](https://tex.z-dn.net/?f=0.05n%2B0.25%5B3n%5D%3D1.60)



Find the value of q

therefore
<u>The answer part a) is</u>
the number of nickels are
and the number of quarters are 
<u>the answer Part b) is</u>
The expressions that represents the number of quarters is
well, you already know an absolute value expression has a ± siblings, so let's proceed without much fuss.
![\bf |2x-5|=4\implies \begin{cases} +(2x-5)=4\implies 2x=9\implies x=\cfrac{9}{2}\\[-0.5em] \hrulefill\\ -(2x-5)=4\implies 2x-5=-4\\[1em] 2x=1\implies x=\cfrac{1}{2} \end{cases}](https://tex.z-dn.net/?f=%20%5Cbf%20%7C2x-5%7C%3D4%5Cimplies%20%20%5Cbegin%7Bcases%7D%20%2B%282x-5%29%3D4%5Cimplies%202x%3D9%5Cimplies%20x%3D%5Ccfrac%7B9%7D%7B2%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20-%282x-5%29%3D4%5Cimplies%202x-5%3D-4%5C%5C%5B1em%5D%202x%3D1%5Cimplies%20x%3D%5Ccfrac%7B1%7D%7B2%7D%20%5Cend%7Bcases%7D%20)
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em>⤴</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>