For this case, the first thing we must do is define a variable.
We have then:
n: number of days.
We now write the explicit formula that represents the problem.
We have then:
an = 4n + 15
Where,
15: crunches the first day
4: increase the number 4 each day
Answer:
An explicit formula for the number of crunches Abbie will do on day n is:
an = 4n + 15
Answer:
x=10, y=25
Step-by-step explanation:
First, in a trapezoid, the two angles on the same leg (the legs are the opposite sides that are not parallel) add up to 180 degrees. Therefore, 4y as well as (2y+3x) are supplementary. We can write this out as
4y + (2y+3x) = 180
6y+3x = 180
Next, the angles of a triangle add up to 180 degrees. Therefore, as the angles 2y, 4y, and (5x-20) make up a triangle, they add up to 180 degrees. We can write this as
4y + 2y + (5x-20) = 180
6y + 5x -20 =180
Our two equations are thus
6y + 5x - 20 = 180
6y + 3x = 180
If we subtract 6y from both sides in each equation, we can say
5x - 20 = 180-6y
3x = 180-6y
Therefore, we can write
5x-20 = 180-5y = 3x
5x-20=3x
subtract 3x from both sides to make all x variables on the same side
2x-20 = 0
add 20 to both sides to isolate the x and its coefficient
2x = 20
divide both sides by 2 to isolate x
x = 10
Therefore,
x = 10
6y + 3x = 180
6y + 30 = 180
subtract 30 from both sides to isolate the y and its coefficient
6y = 150
y = 25
Answer:
3
Step-by-step explanation:
Answer
D or the fourth one because i took the quiz and got it right
Answer:
2
Step-by-step explanation:
Given g(x) = sin(x)-1/cos2(x), we are to find the limit if the function g(x) as g(x) tends to π/2
Substituting π/2 into the function
lim x-->π/2 sin(x)-1/cos 2(x)
= sin(π/2) - 1/cos(2)(π/2)
= 1 - 1/cosπ
= 1- 1/-1
= 1 -(-1)
= 1+1
= 2
Hence the limit of the function h(x) = sin(x)-1/cos2(x) as x--> π/2 is 2