12(3+1)
12(4)
The number 12 times the number 4 is 48
The external angle is suplementary to the internal angle close to it. We also know that the sum of all the internal angles of the triangle are equal to 180 degrees, this means that the angle "a" is suplementary to the sum of the angles "b" and "c". Through this logic, we can conclude that since:

Then we can conclude that:

Therefore the statement is true, the exterior angle is equal to the sum of its remote interior angles.
Let's use an example:
On this example, the external angle is 120 degrees, therefore the sum of the remote interior angles must also be equal to that. Let's try:

The sum of the remote interior angles is equal to the external angle.
No this data set is not a function because two points have x coordinates of 4
Hope this helps
Capital of Idaho is boise this is not a math question
Answer:
the dimensions that minimize the cost of the cylinder are R= 3.85 cm and L=12.88 cm
Step-by-step explanation:
since the volume of a cylinder is
V= π*R²*L → L =V/ (π*R²)
the cost function is
Cost = cost of side material * side area + cost of top and bottom material * top and bottom area
C = a* 2*π*R*L + b* 2*π*R²
replacing the value of L
C = a* 2*π*R* V/ (π*R²) + b* 2*π*R² = a* 2*V/R + b* 2*π*R²
then the optimal radius for minimum cost can be found when the derivative of the cost with respect to the radius equals 0 , then
dC/dR = -2*a*V/R² + 4*π*b*R = 0
4*π*b*R = 2*a*V/R²
R³ = a*V/(2*π*b)
R= ∛( a*V/(2*π*b))
replacing values
R= ∛( a*V/(2*π*b)) = ∛(0.03$/cm² * 600 cm³ /(2*π* 0.05$/cm²) )= 3.85 cm
then
L =V/ (π*R²) = 600 cm³/(π*(3.85 cm)²) = 12.88 cm
therefore the dimensions that minimize the cost of the cylinder are R= 3.85 cm and L=12.88 cm