Only the third model shows parallel lines cut by a transversal.
We can solve this problem by using some properties that parallel lines cut by a transversal have. First of all, corresponding angles are congruent, and since the angles in figure 1 are corresponding but not congruent, that means that figure one is out.
In addition, in figure two, alternate exterior and interior angles of parallel lines intersected by a transversal are congruent, so since they are not in the picture, that means that this figure is also out.
Figure three is correct because since those are same side interior angles, they need to be supplementary for those to be two parallel lines intersected by a transversal. Since they do, in fact, add up to 180°, that means that the answer is figure three.
We use the distance formula for this problem.
d = √[(x₂ - x₁)² + (y₂ - y₁)²]
The distance between point (-2,-2) and point (-2,4).
d = √[(⁻2 - ⁻2)² + (4 - ⁻2)²] = 6 units
Then, compute for 20% of 6 units:
Distance traveled = 6(0.2) = 1.2 units
Use 1.2 units as distance and the starting point (-2,-2). The x-coordinate should still be at -2 because the distance is a straight line as shown in the picture.
1.2 = √[(-2 - ⁻2)² + (y - ⁻2)²]
Solving for y,
y = -0.8
The point is found at (-2,-0.8). This is located at quadrant 3. As to the distance traveled, that would be: 1.2*6 = 6 miles. Thus, the answer is C.
Answer:
9800000
Step-by-step explanation:
The answer would be graph b.
It would be graph b because the point would be five to the left(West) and two down(South).