Answers:
The acceleration due to gravity on the surface of earth is 9.8 ms^(-2).Time period of a simple pendulum on earth and moon are 3.5 second and 8.4 second respectively. Find the acceleration due to gravity on the moon . <br> Hint : T_(e) = 2pi sqrt((L)/(g_(e))) T_(m)= 2pi sqrt((L)/(g_(m))) <br> (T_(e)^(2))/(T_(m)^(2))= (g_(m))/(g_(e)) <br> g_(m) = (T_(e)^(2))/(T_(m)^(2))g_(e)
The answer is B. P waves.
I took the test and it was correct. I hope this helps!
Answer:
Only (I) is true
i) Mass is conserved during a chemical reaction.
Explanation:
The given data is as follows.
Mass, m = 75 g
Velocity, v = 600 m/s
As no external force is acting on the system in the horizontal line of motion. So, the equation will be as follows.
where,
= mass of the projectile
= mass of block
v = velocity after the impact
Now, putting the given values into the above formula as follows.
![75(10^{-3}) \times 600 = [(75 \times 10^{-3}) + 50] \times v](https://tex.z-dn.net/?f=75%2810%5E%7B-3%7D%29%20%5Ctimes%20600%20%3D%20%5B%2875%20%5Ctimes%2010%5E%7B-3%7D%29%20%2B%2050%5D%20%5Ctimes%20v)
= 
v = 0.898 m/s
Now, equation for energy is as follows.
E = 
= 
= 13500 J
Now, energy after the impact will be as follows.
E' = ^{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5B75%20%5Ctimes%2010%5E%7B-3%7D%20%2B%2050%5D%280.9%29%5E%7B2%7D)
= 20.19 J
Therefore, energy lost will be calculated as follows.
= E E'
= (13500 - 20) J
= 13480 J
And, n = 
= 
= 99.85
= 99.9%
Thus, we can conclude that percentage n of the original system energy E is 99.9%.
Answer:
The mass goes down
Explanation:
Because mass is the quantity of matter contained in a substance And Volume is the space occupied by a substance. So when the volume is less the mass decreases