A molecule of the compound carbon dioxide contains one atom of the element carbon and two atoms of the element oxygen. Each oxygen atom shares a double bond with the carbon atom.
Answer:
its an asteroid
and it seems to be same as picture and what I knew
have a great time
Answer:
- <em><u>Mendeleev produced the first orderly arrangement of known elements.</u></em>
- <em><u>Mendeleev used patterns to predict undiscovered elements.</u></em>
Explanation:
- <u>Mendeleev produced the first orderly arrangement of known elements and used patterns to predict the undiscovered elements.</u>
Those two statments are true.
For the time being there were some 62 known elements. Before Medeleev some schemes to order part of the elements were proposed, but Medeleev showed the relationship between the atomic mass and the properties of the elements (supports second choice). This arrangement is known as the periodic table.
More importantly, Mendeleev predicted correctly the existance and properties of unknown elements, which is his major contribution: he left blanket spaces which where gradually filled when new elements where discovered (this supports the fourth choice).
The first modern chemistry book was written by Antoine Lavoisier (this discards first option).
Mendeleev ordered the elements by increasing mass number (this discards third choice), which was corrected later by the scientist Henry Moseley, who ordered the elements by increasing atomic number (number of protons).
Isotopes were not known by Mendeleev times, so this discards the last option.
Answer:

Explanation:
We are asked to find how many moles are in 4.8 × 10²³ fluorine atoms. We convert atoms to moles using Avogadro's Number or 6.022 × 10²³. This is the number of particles (atoms, molecules, formula units, etc.) in 1 mole of a substance. In this case, the particles are atoms of fluorine.
We will convert using dimensional analysis and set up a ratio using Avogadro's Number.

We are converting 4.8 × 10²³ fluorine atoms to moles, so we multiply the ratio by this number.

Flip the ratio so the units of atoms of fluorine cancel each other out.


Condense into 1 fraction.

Divide.

The original measurement of atoms has 2 significant figures, so our answer must have the same. For the number we found, that is the hundredths place. The 7 in the thousandths tells us to round the 9 in the hundredths place up to a 0. Then, we also have to round the 7 in the tenths place up to an 8.

4.8 × 10²³ fluorine atoms are equal to <u>0.80 moles of fluorine.</u>