Answer:
jdjdjdhjxjxjchxjxjkxjxjxhxnxkjcjcjcj
Explanation:
sorry i just need point lolllllllllll
Answer:
0.01836 M
Explanation:
Again the reaction equation is;
Fe(s) + Mn2+(aq) → Fe2+(aq) + Mn(s)
E°cell= 0.77 V
Ecell= 0.78 V
[Mn2+] = 0.040 M
[Fe2+] = the unknown
n=2
From Nernst's equation;
Ecell= E°cell- 0.0592/n log Q
0.78= 0.77 - 0.0592/2 log [Fe2+] /[0.040]
0.78-0.77= - 0.0592/2 log [Fe2+] /[0.040]
0.01/ -0.0296= log [Fe2+] /[0.040]
-0.3378= log [Fe2+] /[0.040]
Antilog(-0.3378) = [Fe2+] /[0.040]
0.459= [Fe2+] /[0.040]
[Fe2+] = 0.459 × 0.040
[Fe2+] = 0.01836 M
Answer: 68
Explanation:
Isotopes of an element have same number of protons but different number of neutrons. Which means isotopes of an element have same atomic number but different mass number.
Atomic number is equal to the number of protons or the number of electrons for a neutral atom and is specific to a particular element.
Mass number is the sum of number of protons and the number of neutrons.
Given : atomic number of element Q = 68 = number of protons
Mass number of isotope Q-136 = 136
But as isotopes have same atomic number, the number of protons will be same and hence there are 68 protons are in a neutral atom of this isotope.
Answer:
4.) 9, 1, and 4 5.) 4, 1, and 4
Explanation:
I am not quite sure about this because I cannot remember if the coefficient (the number before the elements) is applied to every element in the compound. If it is then your number of atoms are as follows: CORRECTION: you do not have to apply the coefficient to every element only the one that is after it. So when you back and fix the error your number of atoms will be as follows:
number 4
H: 9
P: 1
O: 4
number 5:
H: 4
S: 1
O: 4
you can calculate the number of atoms present in this compound by multiplying the coefficient and the subscripts of each atom.
hope this helped you :)
Answer:
mL of NaOH required =29.9mL
Explanation:
Let us calculate the moles of vitamin C in the tablet:
The molar mass of Vitamin C is 176.14 g/mole

Thus we need same number of moles of NaOH to reach the equivalence point.
For NaOH solution:


