Answer:
[Ne] 3s² 3p²
Explanation:
Silicon atoms have 14 electrons. The ground state electron configuration of ground state gaseous neutral silicon is 1s²2s²2p⁶3s²3p².
Using noble gas shorthand, the electronic configuration is reduced to;
[Ne] 3s² 3p². Ne s the nearest noble gas to silicon, Ne contains 8 electrons, this means there's still 4 more electrons to fill. The s orrbital can only hold 2, hence the reaing two is transferred to the p orbital.
Image C is adhesion stronger and Image D is cohesion stronger
Answer:
Explanation:
In this case we want to know the structures of A (C6H12), B (C6H13Br) and C (C6H14).
A and C reacts with two differents reagents and conditions, however both of them gives the same product.
Let's analyze each reaction.
First, C6H12 has the general formula of an alkene or cycloalkane. However, when we look at the reagents, which are HBr in ROOR, and the final product, we can see that this is an adition reaction where the H and Br were added to a molecule, therefore we can conclude that the initial reactant is an alkene. Now, what happens next? A is reacting with HBr. In general terms when we have an adition of a molecule to a reactant like HBr (Adding electrophyle and nucleophyle) this kind of reactions follows the markonikov's rule that states that the hydrogen will go to the carbon with more hydrogens, and the nucleophyle will go to the carbon with less hydrogen (Atom that can be stabilized with charge). But in this case, we have something else and is the use of the ROOR, this is a peroxide so, instead of follow the markonikov rule, it will do the opposite, the hydrogen to the more substituted carbon and the bromine to the carbon with more hydrogens. This is called the antimarkonikov rule. Picture attached show the possible structure for A. The alkene would have to be the 1-hexene.
Now in the second case we have C, reacting with bromine in light to give also B. C has the formula C6H14 which is the formula for an alkane and once again we are having an adition reaction. In this case, conditions are given to do an adition reaction in an alkane. bromine in presence of light promoves the adition of the bromine to the molecule of alkane. In this case it can go to the carbon with more hydrogen or less hydrogens, but it will prefer the carbon with more hydrogens. In this case would be the terminal hydrogens of the molecules. In this case, it will form product B again. the alkane here would be the hexane. See picture for structures.
Answer:
c) 2.5 mL
Explanation:
Solution
Doctors order = 0.125g
and
The liquid suspension concentration = 250 mg/5ml
= 0.250g/5ml
Or 0.05g/ml
Amount of ml of suspension required = 0.125g/(0.05g/ml) = 2.5ml
<span>Both provide approaches to confirming the result of experimentation. Repetition can be developed by one scientist or team continually achieving the expected result but replication requires an independent person or team shows thay can arrive at the same answer independently</span>