5√18
= 5 *√9 *√2
= 5*3*<span>√2
= 15</span><span>√2</span>
What following example. There is no example for us to help u with
The equation of the ellipse in <em>standard</em> form is (x + 3)² / 100 + (y - 2)² / 64 = 1. (Correct choice: B)
<h3>What is the equation of the ellipse associated with the coordinates of the foci?</h3>
By <em>analytical</em> geometry we know that foci are along the <em>major</em> axis of ellipses and beside the statement we find that such axis is parallel to the x-axis of Cartesian plane. Then, the <em>standard</em> form of the equation of the ellipse is of the following form:
(x - h)² / a² + (y - k)² / b² = 1, where a > b (1)
Where:
- a - Length of the major semiaxis.
- b - Length of the minor semiaxis.
Now, we proceed to find the vertex and the lengths of the semiaxes:
a = 10 units.
b = 8 units.
Vertex
V(x, y) = 0.5 · F₁(x, y) + 0.5 · F₂(x, y)
V(x, y) = 0.5 · (3, 2) + 0.5 · (- 9, 2)
V(x, y) = (1.5, 1) + (- 4.5, 1)
V(x, y) = (- 3, 2)
The equation of the ellipse in <em>standard</em> form is (x + 3)² / 100 + (y - 2)² / 64 = 1. (Correct choice: B)
To learn more on ellipses: brainly.com/question/14281133
#SPJ1
is the expression that includes an exponent and has a value of 8
<em><u>Solution:</u></em>
Given that, Use the number 8, 6, and 2 and one operation to write an expression that includes an exponent and has a value of 8
We have to use each number only once
Given numbers are 8, 6, 2
Our expression should include exponent and the result should be 8
Among 6 and 2 we can use 2 for exponent
Raise 2 to power of 1
<em><u>The expression becomes:</u></em>

Here we have used one operation, that is addition
Verifying the expression

Thus the required expression is found
Answer: 8 minimum work stations is what would be needed.
Step-by-step explanation:
The cycle time is computed as the operating time daily divided by the scheduled output.
It is important to note that the daily capacity of the operation layout is the operating time divided by the cycle time.
Therefore,
If you need to produce 30units/hour.
The average cycle time is as follow:
The average cycle time is the average time between the completions of units.
60/30= 2 average cycle time
=16/2
=8
8 work stations is the minimum number that would be needed.
It is important to know that in an assembly line balancing, the minimum number of work station is the ratio of the sum of all tasks time to the cycle time.