Answer:
220,500 Joules
Explanation:
PE = (75 kg) x (9.8
) x (300 m)
PE = (735) x (300)
PE = 220,500 Joules
Answer:
As each mower presumably needs the same torque to start, and torque is a product of force and moment arm, the longer moment arm of 10.42 cm on Uwi's mower means lower force is required when compared to Urippe's shorter moment arm of 1.35 cm
350 rev/min = 350(2π) / 60 = 36.652 rad/s
36.652 rad/s / 0.294 s = 124.66... <u>125 rad/s²</u>
a = αR = 125(0.1042) = 12.990... <u>13 m/s²</u>
a = αR = 125(0.0135) = 1.68299... <u>1.7 m/s²</u>
I am GUESSING that we are supposed to model these mowers as a uniform disk
τ = Iα
FR = (½mr²)α
F = mr²α/2R
Urippe's pull = (3.56)(0.2041²)(124.66) / (2(0.0135)) = 702.008... <u>702 N</u>
Usi's pull = (3.56)(0.2041²)(124.66) / (2(0.1042)) = 90.9511...<u>91.0 N</u>
L = Iω = (½(3.56)(0.2041²))36.652 = 2.71771...<u>2.72 kg•m²/s down</u>
using the right hand rule
The proper difference between hor Rse and horse is both shows the same thing that is the horse
The strength of the gravitational field is given by:

where
G is the gravitational constant
M is the Earth's mass
r is the distance measured from the centre of the planet.
In our problem, we are located at 300 km above the surface. Since the Earth radius is R=6370 km, the distance from the Earth's center is:

And now we can use the previous equation to calculate the field strength at that altitude:

And we can see this value is a bit less than the gravitational strength at the surface, which is

.
Sound waves are known to be the one that's not considered as a type of electromagnetic energy. As for microwaves and x-rays, they tend to share the same frequencies that can be considered as electromagnetic, and sound waves have a different frequency than them.