Yes, that's correct. The note "A" (which is used to tune the other strings of the guitar) corresponds to a frequency of 440 Hz.
Answer:
1069.38 gallons
Explanation:
Let V₀ = 1.07 × 10³ be the initial volume of the gasoline at temperature θ₁ = 52 °F. Let V₁ be the volume at θ₂ = 97 °F.
V₁ = V₀(1 + βΔθ) β = coefficient of volume expansion for gasoline = 9.6 × 10⁻⁴ °C⁻¹
Δθ = (5/9)(97°F -52°F) °C = 25 °C.
Let V₂ be its final volume when it cools to 52°F in the tank is
V₂ = V₁(1 - βΔθ) = V₀(1 + βΔθ)(1 - βΔθ) = V₀(1 - [βΔθ]²)
= 1.07 × 10³(1 - [9.6 × 10⁻⁴ °C⁻¹ × 25 °C]²)
= 1.07 × 10³(1 - [0.024]²)
= 1.07 × 10³(1 - 0.000576)
= 1.07 × 10³(0.999424)
= 1069.38 gallons
Answer:

Explanation:
The problem tell us that the temperature as function of time in downtown mathville is given by:

The average temperature over a given interval can be calculated as:

Where:

So, the initial temperature in this case, would be the temperature at noon, and the final temperature would be the temperature at midnight:
Therefore:


Hence, the average temperature between noon and midnight is:

Answer:
An object on the moon would weigh the LEAST among these. So correct answer is B.
Explanation:
- Weight of an object on any place is given by:
W = Mass * Acceleration due to gravity(g)
- It means when masses of different objects those are in different places are same, the weight of those objects depends upon the 'g' of that particular place.
- As we know, acceleration due to gravity on surface of moon (g') is 6 times weaker than the acceleration on surface of earth (g), which is due to the large M/R^2 of the earth than the moon.
i.e. g' = g/6 so W' = W/6
- And in the space between the two, the object is weightless.