Answer:
Obesity does not lead to addiction. Obesity is a weight condition characterized by a body.
Explanation:
The resistance is 4 times the resistance of the first wire. the formula is R = p*l/A with p being resistivity, l length and A area. So if you double length and half area, which botv result in more resistance, you get p*2/0.5 or 4 (p can be abandoned because it is the same. We take standard length and area as 1)
I am sorry I cant find the answer. I was hoping to find the answer
Explanation:
Show that the motion of a mass attached to the end of a spring is SHM
Consider a mass "m" attached to the end of an elastic spring. The other end of the spring is fixed
at the a firm support as shown in figure "a". The whole system is placed on a smooth horizontal surface.
If we displace the mass 'm' from its mean position 'O' to point "a" by applying an external force, it is displaced by '+x' to its right, there will be elastic restring force on the mass equal to F in the left side which is applied by the spring.
According to "Hook's Law
F = - Kx ---- (1)
Negative sign indicates that the elastic restoring force is opposite to the displacement.
Where K= Spring Constant
If we release mass 'm' at point 'a', it moves forward to ' O'. At point ' O' it will not stop but moves forward towards point "b" due to inertia and covers the same displacement -x. At point 'b' once again elastic restoring force 'F' acts upon it but now in the right side. In this way it continues its motion
from a to b and then b to a.
According to Newton's 2nd law of motion, force 'F' produces acceleration 'a' in the body which is given by
F = ma ---- (2)
Comparing equation (1) & (2)
ma = -kx
Here k/m is constant term, therefore ,
a = - (Constant)x
or
a a -x
This relation indicates that the acceleration of body attached to the end elastic spring is directly proportional to its displacement. Therefore its motion is Simple Harmonic Motion.
Answer:
Stainless steel
Explanation:
I will try to order the solutions from the least correct to the most correct.
Since a temperature greater than 200 ° F is required, that is to say approximately 93 ° c, <em>Polycaprolactone</em> is the least indicated. Its melting point is approximately 60 ° C, so it would not serve the required application.
On the other hand we have<em> Untreated aluminum</em>, which although it has a melting point higher than the required one, without a zinc and magnesium treatment it will easily oxidize in a salty environment, so it cannot be used in this choice either.
We have to compare the two steels.
The<em> Mild Steel </em>has a better corrosion resistance than the previous ones, but in a long-term cycle it will end up full of corrosion and therefore its properties will be highly affected.
Finally, we have <em>stainless steel</em>, which, as the name implies, contains in some of its variations chromium, zinc or magnesium in its alloys, which makes it highly resistant to corrosion.
In addition its melting point is above 1500 ° c.
The best choice is stainless steel.