Answer:
It is expected that linearization beyond age 20 will be use a function whose slope is monotonously decreasing.
Step-by-step explanation:
The linearization of the data by first order polynomials may be reasonable for the set of values of age between ages from 5 to 15 years, but it is inadequate beyond, since the fourth point, located at
, in growing at a lower slope. It is expected that function will be monotonously decreasing and we need to use models alternative to first order polynomials as either second order polynomic models or exponential models.
Answer:
You need to find k, the constant of proportionality, by dividing y with its corresponding x.
Answer:
That is true. If you graph y=-4 it would be a horizontal line on the y axis
Step-by-step explanation:
Answer:
0.8041 = 80.41% probability that a given battery will last between 2.3 and 3.6 years
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
A certain type of storage battery lasts, on average, 3.0 years with a standard deviation of 0.5 year
This means that 
What is the probability that a given battery will last between 2.3 and 3.6 years?
This is the p-value of Z when X = 3.6 subtracted by the p-value of Z when X = 2.3. So
X = 3.6



has a p-value of 0.8849
X = 2.3



has a p-value of 0.0808
0.8849 - 0.0808 = 0.8041
0.8041 = 80.41% probability that a given battery will last between 2.3 and 3.6 years