1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tresset [83]
3 years ago
7

Suppose that a wind is blowing in the direction S45°E at a speed of 30 km/h. A pilot is steering a plane in the direction N60°E

at an airspeed (speed in still air) of 100 km/h. The true course, or track, of the plane is the direction of the resultant of the velocity vectors of the plane and the wind. The ground speed of the plane is the magnitude of the resultant. Find the true course and the ground speed of the plane.
Physics
1 answer:
Kay [80]3 years ago
5 0

Answer:

The true course: 40.29^\circ north of east

The ground speed of the plane: 96.68 m/s

Explanation:

Given:

  • V_w = velocity of wind = 30\ km/h\ S45^\circ E = (30\cos 45^\circ\ \hat{i}-30\sin 45^\circ\ \hat{j})\ km/h = (21.21\ \hat{i}-21.21\ \hat{j})\ km/h
  • V_p = velocity of plane in still air = 100\ km/h\ N60^\circ E = (100\cos 60^\circ\ \hat{i}+100\sin 60^\circ\ \hat{j})\ km/h = (50\ \hat{i}+86.60\ \hat{j})\ km/h

Assume:

  • V_r = resultant velocity of the plane
  • \theta = direction of the plane with the east

Since the resultant is the vector addition of all the vectors. So, the resultant velocity of the plane will be the vector sum of the wind velocity and the plane velocity in still air.

\therefore V_r = V_p+V_w\\\Rightarrow V_r = (50\ \hat{i}+86.60\ \hat{j})\ km/h+(21.21\ \hat{i}-21.21\ \hat{j})\ km/h\\\Rightarrow V_r = (71.21\ \hat{i}+65.39\ \hat{j})\ km/h

Let us find the direction of this resultant velocity with respect to east direction:

\theta = \tan^{-1}(\dfrac{65.39}{71.21})\\\Rightarrow \theta = 40.29^\circ

This means the the true course of the plane is in the direction of 40.29^\circ north of east.

The ground speed will be the magnitude of the resultant velocity of the plane.

\therefore Magnitude = \sqrt{71.21^2+65.39^2} = 96.68\ km/h

Hence, the ground speed of the plane is 96.68 km/h.

You might be interested in
Assuming the bar has no weight where does the fulcrum (the top point of the tringle) need to be positioned for the two sides to
Inessa05 [86]

Fulcrum need to be positioned balanced with weight on both the sides following law of lever.

What is the physical law of the lever?

  • It is the foundation for issues with weight and balance. According to this rule, a lever is balanced when the weight multiplied by the arm on one side of the fulcrum, which serves as the pivot point for the device, equals the weight multiplied by the arm on the opposing side.
  • The lever is balanced, in other words, when the sum of the moments about the fulcrum is zero.
  • The situation in which the positive moments (those attempting to turn the lever clockwise) equal the negative moments is known as this (those that try to rotate it counterclockwise).
  • Moving the weights closer to or away from the fulcrum, as well as raising or lowering the weights, can alter the balance point, or CG, of the lever.

Learn more about the Fulcrum with the help of the given link:

brainly.com/question/16422662

#SPJ4

3 0
1 year ago
A current of 0.92 a flows in a wire. how many electrons are flowing past any point in the wire per second? the charge on one ele
Fantom [35]
The current is defined as the ratio between the charge Q flowing through a certain point of a wire and the time interval, \Delta t:
I= \frac{Q}{\Delta t}
First we need to find the net charge flowing at a certain point of the wire in one second, \Delta t=1.0 s. Using I=0.92 A and re-arranging the previous equation, we find
Q=I \Delta t= (0.92 A)(1.0 s)=0.92 C

Now we know that each electron carries a charge of e=1.6 \cdot 10^{-19} C, so if we divide the charge Q flowing in the wire by the charge of one electron, we find the number of electron flowing in one second:
N= \frac{Q}{q} = \frac{0.92 C}{1.6 \cdot 10^{-19} C}=5.75 \cdot 10^{18}
3 0
3 years ago
What property describes the ability of a material to be flattened into thin sheets by hammering? options:
Ivanshal [37]
D. malleability is the ability to bend or form something ? like if something is malleable you can bend it
8 0
3 years ago
Read 2 more answers
I need the answer to this question what has the student plotted on the vertical axis?
expeople1 [14]

Answer:

The correct option is D

Explanation:

In trying to achieve what the student wanted to see, which is to see the relationship between the weight the cord can hold and how long the cord will stretch. Since the origin of the graph is from zero, the value plotted on the vertical axis would be just the length caused by each weights. Thus, <u>the original length would have to be subtracted from the measured length to determine the actual length caused by the weight added to the cord</u>.

7 0
3 years ago
There is a seasaw that's holding two men. The seesaw has a length of 18m that can pivot from a point at its center. Man 1 has a
Alex

Answer:

Distance=  2.3864m

Explanation:

So that the balance is in equilibrium parallel to the floor, we must match the moment each man makes with respect to the pivot point.

In many cases the point of application of force does not coincide with the point of application in the body. In this case the force acts on the object and its structure at a certain distance, by means of an element that transfers that action of this force to the object.

This combination of force applied by the distance to the point of the structure where it is applied is called the moment of force F with respect to the point. The moment will attempt a rotation shift or rotation of the object. The distance from the force to the point of application is called the arm.

Mathematically it is calculated by expression:

M= F×d

The moment caused by the first man is:

M1= 75kg × (9.81m/s²) × 1.75m= 1287.5625 N×m

The moment caused by the second man must be equal to that caused by the first by which:

M2= 1287.5625 N×m= 55kg × (9.81m/s²) × distance ⇒

⇒distance= (1287.5625 N×m)/( (55kg × (9.81m/s²) )= 2.3864m

At this distance from the pivot point, the second should sit down so that the balance is balanced parallel to the ground.

3 0
3 years ago
Other questions:
  • A ball is thrown straight upward and rises to a maximum height of 18.0 m above its launch point. at what height above its launch
    9·1 answer
  • The product of voltage across a device and the charge passing through it is:
    13·2 answers
  • What is the mass number of the isotope lithium-7??
    15·2 answers
  • you can produce a sound by plucking a string or by blowing in a pipe. how are these two ways different?​
    11·1 answer
  • Which of these oceanic landforms is similar to a canyon?
    11·2 answers
  • Thirty beats are heard in one minute when two notes are played together. If the higher note has a frequency of 740 Hz, what is t
    14·1 answer
  • What chemical formula did early instigators assume for water?
    14·1 answer
  • True or False <br> Most magnets are made<br> from 100% aluminum
    5·2 answers
  • An open beaker of pure water has a water potential of.
    12·1 answer
  • Light passes from an object through the video camera lens and is converted into an electrical signal by a ___________
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!