1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leya [2.2K]
2 years ago
10

A 10 kg rock is suspended 320 m above the ground.

Physics
1 answer:
alina1380 [7]2 years ago
7 0
Potential energy<span> is energy which results from position or configuration. It is the energy stored in an object not moving. It is calculated by:

PE = mgh

where m is the mass, g is the gravitational acceleratin and h is the height.

PE = 10 ( 9.8) (320) = 31360 J = </span>3.1 x 104 J --------> OPTION 2
You might be interested in
PLEASE HELP WILL GIVE BRAINLIEST!!!!!!!!!!!!!!!!!!!!!!!!!!
konstantin123 [22]
.
.... . ....
3 0 0 k m
7 0
2 years ago
Read 2 more answers
What is the symbol SI unit of time?
Vsevolod [243]

Answer:

second is the SI unit of time

7 0
3 years ago
Read 2 more answers
What are two different examples of positive exeleration
sdas [7]

Answer:Accelerating your car to get up to speed on a freeway

An airplane accelerating to take off

Accelerating out of the starting blocks at a track meet

Explanation:

5 0
3 years ago
At what speed must the electron revolve round the nucleus of
EleoNora [17]

Explanation:

I think this is it, give it a try

6 0
2 years ago
A cylinder with a piston contains 0.300 mol of oxygen at 2.50×105 Pa and 360 K . The oxygen may be treated as an ideal gas. The
alukav5142 [94]

Answer:

a) W =  900   J.  b) Q =  3142.8   J . c) ΔU =  2242.8   J. d) W = 0. e) Q =   2244.78   J.  g) Δ U  =  0.

Explanation:

(a) Work done by the gas during the initial expansion:

The work done W for a thermodynamic constant pressure process is given as;

W  =  p Δ V

where  

p  is the pressure and  Δ V  is the change in volume.

Here, Given;

P 1 = i n i t i a l  p r e s s u r e  =  2.5 × 10^ 5   P a

T 1 = i n i t i a l   t e m p e r a t u r e  =  360   K

n = n u m b er   o f   m o l e s  =  0.300  m o l  

The ideal gas equation is given by  

P V = nRT

where ,

p  =  absolute pressure of the gas  

V =  volume of the gas  

n  =  number of moles of the gas  

R  =  universal gas constant  =  8.314   K J / m o l   K

T  =  absolute temperature of the gas  

Now we will Calculate the initial volume of the gas using the above equation as follows;

PV  =  n R T

2.5 × 10 ^5 × V 1  =  0.3 × 8.314 × 360

V1 = 897.91 / 250000

V 1  =  0.0036   m ^3  = 3.6×10^-3 m^3

We are also given that

V 2  =  2× V 1

V2 =  2 × 0.0036

V2 =  0.0072   m^3  

Thus, work done is calculated as;

W  =  p Δ V  = p×(V2 - V1)

W =  ( 2.5 × 10 ^5 ) ×( 0.0072  −  0.0036 )

W =  900   J.

(b) Heat added to the gas during the initial expansion:

For a diatomic gas,

C p  =  7 /2 ×R

Cp =  7 /2 × 8.314

Cp =  29.1  J / mo l K  

For a constant pressure process,  

T 2 /T 1  =  V 2 /V 1

T 2  =  V 2 /V 1 × T 1

T 2  =  2 × T 1  = 2×360

T 2  =  720  K

Heat added (Q) can be calculated as;  

Q  =  n C p Δ T  = nC×(T2 - T1)

Q =  0.3 × 29.1 × ( 720  −  360 )

Q =  3142.8   J .

(c) Internal-energy change of the gas during the initial expansion:

From first law of thermodynamics ;

Q  =  Δ U + W

where ,

Q is the heat added or extracted,

Δ U  is the change in internal energy,

W is the work done on or by the system.

Put the previously calculated values of Q and W in the above formula to calculate  Δ U  as;

Δ U  =  Q  −  W

ΔU =  3142.8  −  900

ΔU =  2242.8   J.

(d) The work done during the final cooling:

The final cooling is a constant volume or isochoric process. There is no change in volume and thus the work done is zero.

(e) Heat added during the final cooling:

The final process is a isochoric process and for this, the first law equation becomes ,

Q  =  Δ U  

The molar specific heat at constant volume is given as;

C v  =  5 /2 ×R

Cv =  5 /2 × 8.314

Cv =  20.785  J / m o l   K

The change in internal energy and thus the heat added can be calculated as;  

Q  = Δ U  =  n C v Δ T

Q =  0.3 × 20.785 × ( 720 - 360 )

Q =   2244.78   J.

(f) Internal-energy change during the final cooling:

Internal-energy change during the final cooling  is equal to the heat added during the final cooling Q  =  Δ U  .

(g) The internal-energy change during the isothermal compression:

For isothermal compression,

Δ U  =  n C v Δ T

As their is no change in temperature for isothermal compression,  

Δ T = 0 ,  then,

Δ U  =  0.

8 0
2 years ago
Other questions:
  • For which pair of launch angles will two identical projectiles have equal ranges?. A. 19.24°, 80.54°B. 16.42°, 74.58°C. 60.23°,
    9·2 answers
  • A baseball pitcher throws a ball at 90.0 mi/h in the horizontal direction. How far does the ball fall vertically by the time it
    7·1 answer
  • Part A What is the resistance of a 4.4 m length of copper wire 1.3 mm n diameter? The resistivity of copper is 1.68x 10-8 Ω-m Ex
    15·1 answer
  • A car starting from rest (i.e. initial velocity = 0.0 m/s), moves in the positive X-direction with a constant average accelerati
    14·1 answer
  • A car accelerates from rest. It reaches a velocity of 25m/s in 10 seconds. What was the cars acceleration?
    7·1 answer
  • Some one help my science homework is due tomorrow and I'm so stuck with question 8-9, and 11-12
    14·1 answer
  • An object accelerates from rest to a velocity of 22 m/s over 35 m what was it’s acceleration
    12·1 answer
  • The water table is the upper limit of the
    5·1 answer
  • You are looking at a yellow flower growing outside in the sunshine. Why does it look yellow?
    11·1 answer
  • Control rods are used to slow down the reaction in the reactor core when the core becomes too hot. Please select the best answer
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!