Answer:
25 and 21 hours respectively
Step-by-step explanation:
Let the number of hours worked by each welder be x and y respectively.
They worked a total of 46 hours. This means :
x + y = 46 hours.......(I)
Now, given their hourly charges, since we have the total amount of money realized, we can make an equation out of it. This means:
34x + 39y = 1669........(ii)
We then solve both simultaneously. From I, x = 46 -y
We can substitute this into ii
34(46 -y) + 39y = 1669
1564 -34y + 39y = 1669
5y = 1669 - 1564
5y = 105
y = 105/5 = 21
x = 46 - y
x = 46 - 21 = 25 hours
The numbers of hours worked by the welders are 25 and 21 respectively
IM going to assume that the "2" is to be squared. If so, then the answer is 2(15x^2+8)
Answer:
(-1, 3)
Step-by-step explanation:
x - 5y = -16 [Equation 1]
-x + 3y = 10 [Equation 2]
<u>Adding both equations</u>
- x - x - 5y + 3y = -16 + 10
- -2y = -6
- y = 3
- x - 5(3) = -16
- x - 15 = -16
- x = -1
<u>Solution</u> : (-1, 3)
Answer:
y= 1/4x -2
Step-by-step explanation:
Y=mx+b
m is the slope
b is the y intercept
Answer:
Step-by-step explanation:
Given that a small business assumes that the demand function for one of its new products can be modeled by

Substitute the given values for p and x to get two equations in c and k

Dividing on by other we get

Substitute value of k in any one equation

b) Revenue of the product is demand and price
i.e. R(x) = p*x = 
Use Calculus derivative test to find max Revenue
R'(x) =
EquateI derivative to 0
1-0.000589x =0
x = 1698.037
When x = 1698 and p = 16.56469