To solve this problem we will apply the laws of Mersenne. Mersenne's laws are laws describing the frequency of oscillation of a stretched string or monochord, useful in musical tuning and musical instrument construction. This law tells us that the velocity in a string is directly proportional to the root of the applied tension, and inversely proportional to the root of the linear density, that is,

Here,
v = Velocity
= Linear density (Mass per unit length)
T = Tension
Rearranging to find the Period we have that


As we know that speed is equivalent to displacement in a unit of time, we will have to



Therefore the tension is 5.54N
Since Speed, V = Distance/Time
Average speed = Total Distance/Total Time
From the given data, Total Distance = 100 + 30 + 75 miles
and Total Time = 2 + 1 + 1 hours
Average Speed = 205/4
Average Speed = 51.25 mph ( or 51mph to the nearest whole number)
Answer:
p=mv=(813kg)(17)= 13,821 kg m\s
Answer:
2.51 m/s
Explanation:
Parameters given:
Angle, A = 33°
Mass, m = 90kg
Inclined distance, D = 2m
Force, F = 600N
Initial speed, u = 2.3m/s
From the relationship between work and kinetic energy, we know that:
Work done = change in kinetic energy
W = 0.5m(v² - u²)
We also know that work done is tẹ product of force and distance, hence, net work done will be the sum of the total work done by the force from the students and gravity.
Hence,
W = F*D*cosA - w*D*sinA
w = m*9.8 = weight
=> W = 600*2*cos33 - 90*9.8*2*sin33
W = 45.7J
=> 45.7 = 0.5*m*(v² - u²)
45.7 = 0.5*90*(v² - 2.3²)
45.7 = 45(v² - 5.29)
=> v² - 5.29 = 1.016
v² = 6.306
v = 2.51 m/s
The final velocity is 2.51 m/s