Answer:
18.03 N
Explanation:
From the fiqure below,
Using parallelogram law of vector
R² = 15²+5²-2×5×15cos(180-60)
R² = 225+25-150cos120°
R² = 250-150(-0.5)
R² = 250+75
R² = 325
R = √325
R = 18.03 N
Hence the resultant force of the object is 18.03 N
Answer:

Explanation:
Given that,
Emf, V = 22 mV
Number of turns in the coil us 519
Rate of change of current is 10 A/s.
We need to find the magnetic flux through each turn of the coil at an instant when the current is 3.70 A.
Let's find the inductance first. So,

We have,
,
is magnetic flux

So, the magnetic flux is
.
Answer:
θ_p = 53.0º
Explanation:
For reflection polarization occurs when a beam is reflected at the interface between two means, the polarization in total when the angle between the reflected and the transmitted beam is 90º
Let's write the transmission equation
n1 sin θ₁ = ne sin θ₂
The angle to normal (vertcal) is
180 = θ2 + 90 + θ_p
θ₂ = 90 - θ_p
Where θ₂ is the angle of the transmitted ray θ_p is the angle of the reflected polarized ray
We replace
n1 sin θ_p = n2 sin (90 - θ_p)
Let's use the trigonometry relationship
Sin (90- θ_p) = sin 90 cos θ_p - cos 90 sin θ_p = cos θ_p
In the law of reflection incident angle equals reflected angle,
ni sin θ_p = ns cos θ_p
n₂ / n₁ = sin θ_p / cos θ_p
n₂ / n₁ = tan θ_p
θ_p = tan⁻¹ (n₂ / n₁)
Now we can calculate it
The refractive index of air is 1 (n1 = 1) the refractive index of seawater varies between 1.33 and 1.40 depending on the amount of salts dissolved in the water
n₂ = 1.33
θ_p = tan⁻¹ (1.33 / 1)
θ_p = 53.0º
n₂ = 1.40
θ_p = tan⁻¹ (1.40 / 1)
Tep = 54.5º
Answer:

Explanation:
Given that
Radius of track = R
Radius of ball = r
The ball can be treated as solid sphere, so
The moment of inertia of ball

When the ball reach at the lowest position then it will have both angular and linear speed.
Condition for rolling without slipping v= ωr
Form energy conservation

v= ωr





