Answer: part a: 19.62m
part b: 19.62 m/s
part a: 2.83 secs
Explanation:If the air resistance is ignored then the swimmer experience free fall under gravity hence
u=0
a=9.81 m/s2
t=2 secs

s=h

Part b

Part c
now we have h=2*19.62=39.24

Together, normal and reverse faults are called dip-slip faults, because the movement on them occurs along the dip direction -- either down or up, respectively. Reverse faults create some of the world's highest mountain chains, including the Himalaya Mountains and the Rocky Mountains .
I found this on arxsiv.org: “The central force motion between two bodies about their center of mass can be reduced to an equivalent one body problem in terms of their reduced mass m and their relative radial distance r. ... The potential V (r) from which this force is derived is also a function of r alone, F = −VV, V ≡ V (r).”
Mark as BRAINLIEST?
<span>The weight of the spacecraft keeps changing.
</span>
<span>The mass of the spacecraft remains the same.
These are the correct answers</span>
Answer: 39.2 m/s
Explanation:
You can use the kinematic equation:

We know the final velocity because it says it came to a stop. So now all we gotta do is plug in.
