The vectors adition we can find the magnitude of the force applied by the other astronaut is 11.25 N in the y direction
Parameters given
- Force of an astronaut Fₓ = 42 N
To find
The force is a vector magnitude for which the addition of vectors must be used, a very efficient method to perform this sum is to add the components of each vector and devise constructing the resulting vector using trigonometry and the Pythagorean theorem.
Let's use trigonometry to find the other force
tan θ =
F_ y = Fₓ tan θ
let's calculate
F_y = 42 tan 15
F_y = 11.25 N
Using the summation of vectors we can find the magnitude of the force applied by the other astronaut is 11.25 N in the y direction
Learn more about vector addition here:
brainly.com/question/15074838
Answer:
<h2>Mass of 1 Kg and 2 Kg, 1 meters apart.</h2>
Explanation:
The gravitational force is defined as
By definition, the gravitational force depends directly on the product of the masses and indirectly on the distance between the masses, which means the further they are, the less gravitational force would be. And, the greater the masses, the greater the gravitational force.
Among the options, the pair that would have the greatest gravitational force is Mass of 1 Kg and 2 Kg, with 1 meter between them.
Notice that the last choice includes the same masses but with a greater distance between them, that means it would be a weaker graviational force.
Therefore, the right answer is the second choice.
Someone can make an introduction about getting a flu shot because, mostly everyone in the world have gotten or just got a flu shot. One example of a pro is that, a flu shot can prevent the flu, and other deadly sicknesses. On example of a con is that, some flu shots can carry side effects which is something that should be tested before given to adults and especially kids!!! Hope this helps!!! Good luck
Answer:
Explanation:
Given
Volume of paint is
Area of cover
Suppose paint to be a rectangular box with thickness t and volume V
therefore we can write as
Answer: a) vcar= 7 m/s ; b) a train= 0.65 m/s^2
Explanation: By using the kinematic equation for the car and the train we can determine the above values of the car velocity and the acceletarion of the train, respectively.
We have for the car
distance = v car* t, considering the length of train (81.1 m) travel by the car during the first 11.6 s
the v car = distance/time= 81.1 m/11.6s= 7 m/s
In order to calculate the acceleration we have to use the kinematic equation for the train from the rest
distance train = (a* t^2)/2
distance train : distance travel by the car at constant speed
so distance train= (vcar*36.35)m=421 m
the a traiin= (2* 421 m)/(36s)^2=0.65 m/s^2