Answer:
8 N North.
Explanation:
Given that,
One force has a magnitude of 10 N directed north, and the other force has a magnitude of 2 N directed south.
We need to find the magnitude of net force acting on the object.
Let North is positive and South is negative.
Net force,
F = 10 N +(-2 N)
= 8 N
So, the magnitude of net force on the object is 8 N and it is in North direction (as it is positive). Hence, the correct option is (d) "8N north".
C.
remember
reactants ----> products
For purposes of completing our calculations, we're going to assume that
the experiment takes place on or near the surface of the Earth.
The acceleration of gravity on Earth is about 9.8 m/s², directed toward the
center of the planet. That means that the downward speed of a falling object
increases by 9.8 m/s for every second that it falls.
3 seconds after being dropped, a stone is falling at (3 x 9.8) = 29.4 m/s.
That's the vertical component of its velocity. The horizontal component is
the same as it was at the instant of the drop, provided there is no horizontal
force on the stone during its fall.
Answer:
15km/hr
Explanation:
The average speed for the entire trip is the sum of the total distance traveled divided by the total time of the trip.
Total time = 4hr
distance for the first 3hrs = 50km
distance for the last 1hr = 10km
Total distance = 50km + 10km = 60km
Now;
Average speed =
Insert the parameters and solve;
Average speed =
= 15km/hr