Answer:
h' = 603.08 m
Explanation:
First, we will calculate the initial velocity of the pellet on the surface of Earth by using third equation of motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity on the surface of earth = - 9.8 m/s² (negative sign due to upward motion)
h = height of pellet = 100 m
Vf = final velocity of pellet = 0 m/s (since, pellet will momentarily stop at highest point)
Vi = Initial Velocity of Pellet = ?
Therefore,
(2)(-9.8 m/s²)(100 m) = (0 m/s)² - Vi²
Vi = √(1960 m²/s²)
Vi = 44.27 m/s
Now, we use this equation at the surface of moon with same initial velocity:
2g'h' = Vf² - Vi²
where,
g' = acceleration due to gravity on the surface of moon = 1.625 m/s²
h' = maximum height gained by pellet on moon = ?
Therefore,
2(1.625 m/s²)h' = (44.27 m/s)² - (0 m/s)²
h' = (1960 m²/s²)/(3.25 m/s²)
<u>h' = 603.08 m</u>
<span>its kinetic energy is 7350kJ
</span>
Kinetic energy is given as =

Now, m = 12 gms = 0.012 kg
And, velocity = 35 kilometers/second = 35000 m/sec
Kinetic energy is given as =
![\frac{1}{2} 0.012 kg * 35000*35000 m/[tex] s^{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%200.012%20kg%20%2A%2035000%2A35000%20m%2F%5Btex%5D%20s%5E%7B2%7D%20)
= 6

×1225 ×

m/
= 7350 kJ
Answer:
Light or visible light is electromagnetic radiation within the portion of the electromagnetic spectrum that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nm, or 4.00 × 10⁻⁷ to 7.00 × 10⁻⁷ m, between the infrared and the ultraviolet.
Explanation:
This is one type of light.
I think the answer would be C. G<span>ravitational force is proportional to the square of the distance between the centers of both bodies. </span>