Answer:
h= 4.6, c=7.1
Step-by-step explanation:
First you need to know in a 30 60 90 triangle the sides ratios are x, 2x and x√3, and for 45 90 45 it is x, x and x√2
so <em>h</em> is 8/√3 and you rationalize the bottom so it becomes 8√3/3. when you solve this and round to nearest hundred it becomes 4.6. for the second one, it is 5√2 and when you solve this and round, it becomes 7.1
<em>Here's</em><em> </em><em>my</em><em> </em><em>working</em><em> </em><em>for</em><em> </em><em>1</em><em>)</em><em> </em><em>You</em><em> </em><em>need</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>the</em><em> </em><em>exterior</em><em> </em><em>angle</em><em>,</em><em> </em><em>then</em><em> </em><em>divide</em><em> </em><em>by</em><em> </em><em>360</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>the</em><em> </em><em>number</em><em> </em><em>of</em><em> </em><em>sides</em><em>:</em>
<em>Applying</em><em> </em><em>these</em><em> </em><em>steps</em><em> </em><em>:</em><em> </em>
180 (Interior Angles) - 162 = 18 (Exterior angle)
360 ÷ 18 is<em> </em><em>20</em><em> </em><em>sides</em><em> </em>
<em>For</em><em> </em><em>2</em><em>)</em>
<em>Its</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>method</em><em>,</em><em> </em><em>so</em><em> </em><em>apply</em><em> </em><em>the</em><em> </em><em>steps</em><em>:</em>
<em>180</em><em> </em><em>-</em><em> </em><em>175</em><em> </em><em>=</em><em> </em><em>5</em>
<em>360</em><em> </em><em>÷</em><em> </em><em>5</em><em> </em><em>=</em><em> </em><em>72</em><em> </em><em>sides</em><em> </em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em><em>!</em><em> </em><em>:</em><em>)</em><em> </em>
The answer would be 36.35700 hope i helped
Answer:
The answer is B.) 3
Step-by-step explanation:
Answer:
or
(simplified)
Step-by-step explanation:
Based on the information provided within the question it can be said that in order to calculate the probability of both grapes being green we need to find the probability of each grape being green separately and then multiply those probabilities together
In the first choice, there are a total of 22 grapes (9+13), 9 of which are green. Therefore the probability of the first chosen grape being green is 
In the second choice,since we removed one grape there is now a total of 21 grapes (22-1), 8 of which are green. Therefore the probability of the second chosen grape being green is 
Now we multiply both probabilities together to calculate the probability that both grapes are green in a sequence.
