I would say b as well. I’m sorry if it’s wrong
Answer:
t = 2 seconds
Explanation:
In 2nd question, the question is given the attached figure.
Initial speed of the bus, u = 0
Acceleration of the bus, a = 8 m/s²
Final speed, v = 16 m/s
We need to find the time taken by the car to reach the stop. Acceleration of an object is given by :

t is time taken

The bus will take 2 seconds to reach the stop.
Answer:
I think it is <em><u>Rooting</u></em><em> </em><u><em>Reflex</em></u>
The moment of inertia of the flywheel is 2.63 kg-
It is given that,
The maximum energy stored on the flywheel is given as
E=3.7MJ= 3.7×
J
Angular velocity of the flywheel is 16000
= 1675.51
So to find the moment of inertia of the flywheel. The energy of a flywheel in rotational kinematics is given by :
E = 

By rearranging the equation:
I = 
I = 2.63 kg-
Thus the moment of inertia of the flywheel is 2.63 kg-
.
Learn more about moment of inertia here;
brainly.com/question/13449336
#SPJ4
Answer:
The initial velocity was U=22.14m/s
Explanation:
Step one :
Applying the third equation of motion
v² = u²+ 2as
Where v= Final velocity
U =initial velocity
a= acceleration due to gravity
S= distance or displacement
Step two :
V= 0
a= 9.81m/s²
S=25m
U=?
Step three :
Substituting into the equation we have
0²=U²+2*9.81*25
0=U²+490.5
U²=-490.5
U=√490.5
U=22.14m/s