Answer:
5.4 J.
Explanation:
Given,
mass of the object, m = 2 Kg
initial speed, u = 5 m/s
mass of another object,m' = 3 kg
initial speed of another orbit,u' = 2 m/s
KE lost after collusion = ?
Final velocity of the system
Using conservation of momentum
m u + m'u' = (m + m') V
2 x 5 + 3 x 2 = ( 2 + 3 )V
16 = 5 V
V = 3.2 m/s
Initial KE = 
= 
= 31 J
Final KE = 
Loss in KE = 31 J - 25.6 J = 5.4 J.
Answer : The final temperature of gas is 266.12 K
Explanation :
According to the Joule-Thomson experiment, it states that when a gas is expanded adiabatically from higher pressure region to lower pressure region, the change in temperature with respect to change in pressure at constant enthalpy is known as Joule-Thomson coefficient.
The formula will be:

or,

As per question the formula will be:
.........(1)
where,
= Joule-Thomson coefficient of the gas = 
= initial temperature = 
= final temperature = ?
= initial pressure = 200.0 atm
= final pressure = 0.95 atm
Now put all the given values in the above equation 1, we get:


Therefore, the final temperature of gas is 266.12 K
Answer:
1. False
2. True
3. True
Explanation:
1- False —> The relation between electric potential and electric field is given such that

Therefore, for a uniform E field, electric potential is linearly proportional to the distance.
2- True —> The electric field lines always cross the equipotential lines perpendicularly.
3- True —> In order to be a potential difference, one source of electric field is enough. The electric potential will decrease radially according to the following formula:

There is no test charge in the formula, only the source charge. Even when there is no test charge, the potential difference between points in space can exist.